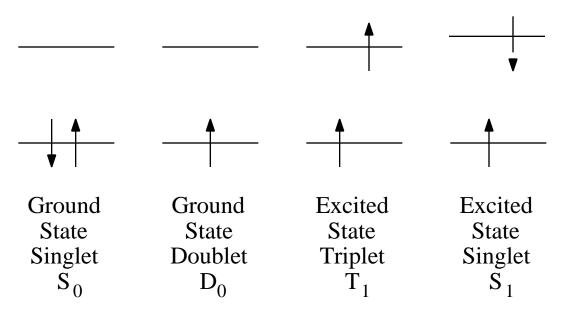
Luminescence Spectroscopy (Chapter 15)

fluorescence, phosphorescence, chemiluminescence all follow electronic excitation

Excited Electronic States:


Each electron has unique set of *quantum numbers* (Pauli Exclusion Principle)

- n principal ($\underline{1}$ s, $\underline{3}$ p...)
- 1 angular momentum (1=0=s, 1=1=p...)
- s spin
- m magnetic

Any two electrons in same orbital (n, l, m) must have different spins

$$s = +\frac{1}{2} \quad \text{or} \quad -\frac{1}{2}$$
$$S = |s_i|$$

Multiplicity: 2S+1 (either 1, 2, 3...)

Multiplicities:

 S_0 - common, diamagnetic (not affected by B fields)

D₀ - unpaired electron, many radicals, two equal energy states

T₁ - rare, paramagnetic (affected by B fields)

(T₀ - doesn't exist, not ground state)

 $Energy(S_1) > Energy(T_1)$

(difference is energy required to flip electron spin)

Example: Na ground state 1s² 2s² 2p⁶ 3s¹ s=1/2, 2S+1=2, ground state doublet s electron written 3(2S) Two spin states of equal energy (up/down) Na 1st excited state $1s^2 2s^2 2p^6 3p^1$ D₁ written 3(2P) BUT two spins states? J (total ang. mom)=L+S or L-S now $1s^2 2s^2 2p^6 3s^1 = 3(2P_{1/2})$ and $3(2P_{3/2})$

Term Symbol $^{2S+1}L_J$

Na 3p 3s fluorescence two lines at 589.6 nm ($^{2}P_{3/2}$) and 589.0 nm ($^{2}P_{1/2}$)

 $\left(S_1 \stackrel{\text{Emission}}{=} S_0 \quad S_1 \stackrel{\text{Absorption}}{=} S_0 \right)$

What about Lifetimes?

• Absorption:

S₁ S₀ very fast 10⁻¹⁵-10⁻¹³ s

• Relaxation:

Resonant emission S_1 S₀ fast 10-9-10-5 s (fluorescence)

common in atoms

strong absorber shorter lifetime

Non-resonant emission S_1 S_0 fast 10-9-10-5 s (fluorescence)

common in molecules

v. fast vibrational relaxation

red shifted emission (Stokes shift)

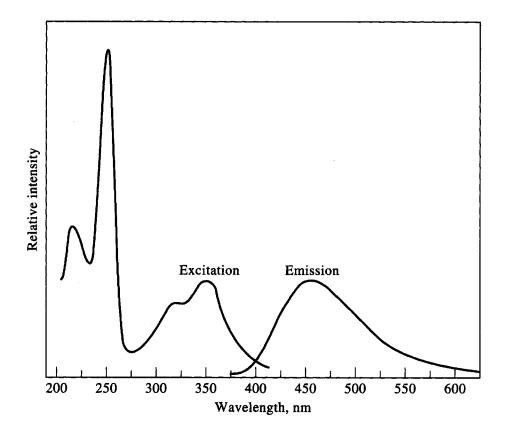
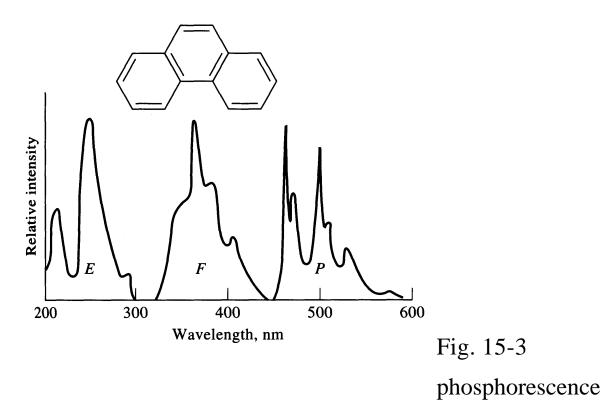
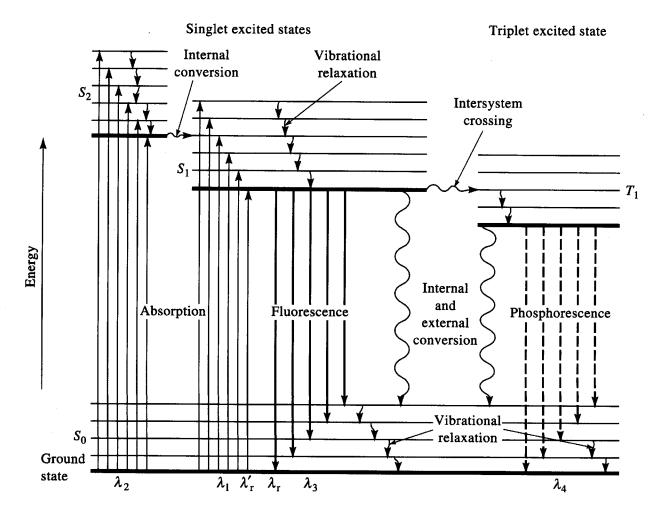



Fig. 15-2

Non-resonant emission T_1 S₀ slow 10⁻⁵-10 s (phosphorescence)


Transitions between states of different multiplicities are improbable "forbidden" (e.g. T S or T S)

fluorescence

excitation

Internal Conversion:	radiationless transition to lower state when vibrational energy levels "match"
External Conversion:	radiationless transition to lower state by collisional deactivation
Intersystem Crossing:	transition with spin change (e.g. S to T)
Fluorescence:	emission not involving spin change (e.g. S S, T T), efficient, short-lived <10 ⁻⁵ s
Phosphorescence:	emission involving spin change (T S), improbable, long-lived >10 ⁻⁵ s
Dissociation :	excitation to vibrational state with enough energy to break bond
Predissociation :	relaxation to state with enough energy to break bond

Energy Level Diagram: (Fig. 15-1)

How likely is fluorescence?

Fluorescence Quantum Yield - ratio of number of molecules fluorescing to number excited

$$fluor = \frac{\# \text{ photons fluor}}{\# \text{ species excited}} \qquad (\text{ fluor} = 0.0 \text{ to } 1.0)$$
$$= \frac{k_{\text{fluor}}}{k_{\text{fluor}} + k_{\text{int con}} + k_{\text{ext con}} + k_{\text{ISC}} + k_{\text{pre dis}} + k_{\text{dis}}}$$

What Factors Affect Φ_{fluor} ?

(1) Excitation

Short 's break bonds increase k_{pre-dis} and k_{dis} rarely observed most common * * n *

emission usually from lowest lying excited state

(2) Lifetime of state

Transition probability measured by

Large implies short lifetime

Largest fluorescence from short lifetime/high state

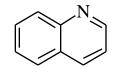
* > * $n (10^{-9} - 10^{-7} s > 10^{-7} - 10^{-5} s)$

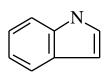
(3) Structure

Few conjugated aliphatics fluoresce

Many aromatics fluoresce

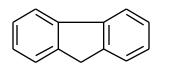
Desire short lifetime S_1 , no/slowly accessible T_1


Fluorescence increased by # fused rings and substitution on/in ring

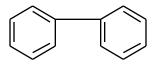


Pyridine

Pyrrole


Quinoline

Indole


(4) Rigidity

Rigid structures fluoresce

Increase in fluorescence with chelation

Fluorene

Biphenyl

(5) Temperature, pH, solvent (p 363-364)

Quantitative Luminescence Spectrophotometry:

Fluorescence

$$\vec{F} = K' (I_0 - I)$$

 $= K' 2.303 \text{ bc } I_0$
 $= K \text{ c}$

Only works at low A (<0.05)

(i) self quenching (collisions between excited states

(ii) self absorption (when absorption and fluorescence band overlap)

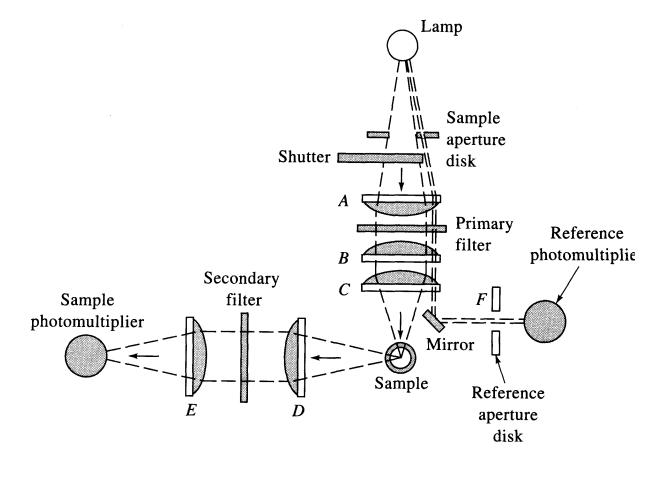


Fig. 15-6

Fluorometer - filters to isolate excitation and fluorescence wavelengths (but no scanning)

Spectrofluorometer - two monochromators for excitation scanning or fluorescence scanning

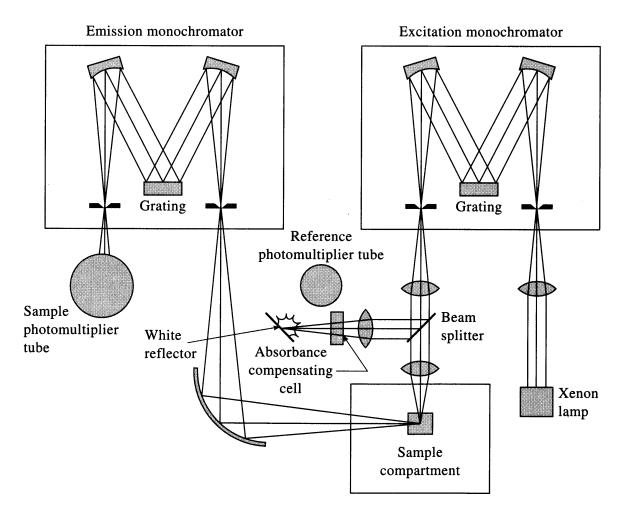
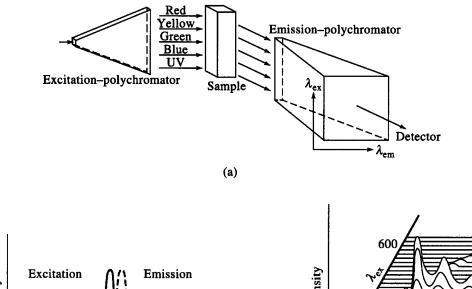
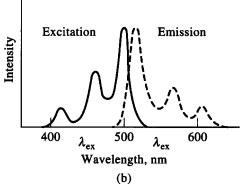
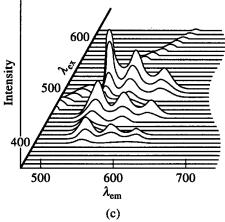
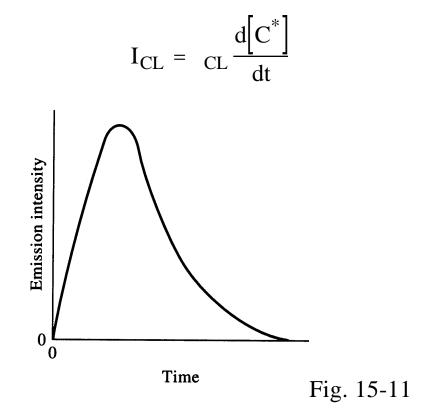





Fig 15-7

Total Luminescence Measurements:

Chemiluminescence: (see www article)


Reaction produces molecule in electronically excited state

$$\begin{array}{cc} A+B & C^*+D \\ C^* & C+h \end{array}$$

Example:

Used to detect NO from 1 ppb to 10 ppt

Intensity depends on rate of reaction of production of C*

Advantages: (i) simple instrumentation (no excitation h) (ii) high sensitivity (ppm to <ppb)

Disadvantages: (i) few reactions