UV-Vis (Absorption) Spectrometry (Chapters 13, 14)

Beer's Law:

$$A = bc = -\log T = -\log \frac{I}{I_0} = \log \frac{I_0}{I}$$

Absorbance is additive

$$A_{total} = A_1 + A_2 \dots$$

= $_1bc_1 + _2bc_2 \dots$

in a 2 component mixture

A
$$_{1} = _{1, 1}$$
 b $c_{1} + _{2, 1}$ b c_{2}
A $_{2} = _{1, 2}$ b $c_{1} + _{2, 2}$ b c_{2}

Limitations of Beer's Law (pp 303-311):

(1) Chemical effects - analyte associates, dissociates or reacts to give molecule with different

CEM 333 page 4.1

(2) Physical effects - stray light, polychromatic radiation or noise

$$A_{1} = -\log T_{1} = \int_{1}^{1} bc$$

$$= \log \frac{I_{0}}{I}_{1}$$

$$I_{1} = I_{0} \int_{1}^{1} 10^{-1} \int_{1}^{1} bc$$

$$I_{2} = I_{0} \int_{2}^{1} 10^{-2} \int_{2}^{1} bc$$

$$A_{-} = \frac{I_{0} + I_{0} \int_{2}^{2}}{I_{1} + I_{2}}$$

$$= \frac{I_{0} + I_{0} \int_{2}^{2}}{I_{0} \int_{1}^{1} 10^{-1} \int_{1}^{1} bc} + I_{0} \int_{2}^{1} 10^{-2} \int_{1}^{1} bc}$$

$$A_{-} = \log (I_{0} + I_{0} \int_{2}^{2}) - \log (I_{0} + I_{0} \int_{2}^{1} 10^{-2} \int_{1}^{1} bc} + I_{0} \int_{2}^{1} 10^{-2} \int_{1}^{1} bc}$$

non-linear calibration curve (Fig 13-4, 13-5)

Typical UV-Vis Spectrophotometers:

(Fig 13-12)

includes selection

(a) single beam (SB) (b) double-beam (DB)-in-space (c) double-beam-in-time

Multichannel Spectrophotometer

No monochromator, but disperses transmitted light and measures "all wavelengths at once" (Fig 13-13)

No scanning - simple and fast More expensive Limited resolution

Applications of UV-Vis Spectrometry:

M + h excitation M^* relaxation M + h / heat

How probable?

ranges 0 to ~100,000 L/mol·cm

"forbidden"

"allowed"

electronic transition

Which electrons get excited?

In UV-Vis, photon provides enough energy to move outer valence (bonding) electrons

Organic molecules

=	s _A +	s _B	Bonding n	nolecular orbital	
* =	_{sA} –	s _B	Antibonding	* molecular orbital	
=	p _A +	$p_{\mathbf{B}}$	Bonding	molecular orbital	
* =	p _A -	p _B	Antibonding	g * molecular orbital	
(a) σ orbital			(c) σ^* orbit	ital	
			Õ		
(b) π orbital			(d) π * orb	ital	

Fig 14-1

, (bonding) and n (non-bonding) electrons

Arrange in terms of **energy**:

Ideal for UV-Vis spectrometry of organic chromophore

• Red shift of max with increasing conjugation CH₂=CHCH₂CH₂CH=CH₂ max =185 nm

CH2=CHCH=CH2 max =217 nm

• **Red shift** of max with **# of rings**

Benzene _{max} =204 nm

Naphthalene $\max = 286 \text{ nm}$

• Blurred with **solvent**

Fig 14-5

Inorganic Ions

Most transition metal ions are colored (absorb in UV-vis) due to

d d electronic transitions (Fig 14-7)

Remember:

- Solution absorbs red appears blue-green
- Solution absorbs blue-green appears red

Ligands cause different interactions with d electrons (Fig 14-8, 14-9) - **ligand field splitting**

Ligand Field Strengths:

	_{max} for complex (nm)						
	Increasing Ligand Field Strength						
	6Cl-	6H ₂ 0	6NH ₃	3en	6CN-		
Cr(III)	736	573	462	456	380		

 $I - <\!\!Br - <\!\!Cl - <\!\!F - <\!\!OH - <\!\!C_2O_4^2 - \sim\!\!H_2O <\!\!SCN - <\!\!NH_3 <\!\!en <\!\!NO_2^- <\!\!CN - <\!\!NH_3 <\!\!en <\!\!NO_2^- <\!\!NH_3 <\!\!en <\!\!ND_3^- <\!\!NH_3 <\!\!en <\!\!NH_$

vis

UV

"Spectrochemical Series"

Solvent Effects:

Solvent	Approximate ^a Transparency Minimum (nm)
Water	190
Ethanol	210
n-Hexane	195
Cyclohexane	210
Benzene	280
Diethyl ether	210
Acetone	330
1,4-Dioxane	220

(i) Solvent transparency in UV (Table 14-6)

^aFor 1-cm cells.

- (ii) Polar solvents "blur" vibrational features more than nonpolar
- (iii) Polar solvents more likely to shift absorption maxima

Shifts of max with solvent polarity

- n * hypsochromic/blue shift
 - * bathochromic/red shift

Fig 14-12

Solvent effects mean UV-Vis **not reliable for qualitative** but **excellent for quatitative** analysis.