Optical Spectroscopy and Instrumentation (Chapter 7)

(IR, visible and UV)

Examples:

T=1.00 (100 %T), A=0.00 T=0.10 (10 %T), A=1.00 T=0.001 (0.1 %T), A=3.00 Beer's Law:

Basis for absorbance spectrophotometry

$$A \quad c \quad and \quad A \quad b$$

so
$$A \quad b \quad c$$

$$A = a \quad b \quad c$$

proportionality constant absorptivity - units of $L/g \cdot cm$

If units of concentration are M (mol/L) then use molar absorptivity

$$\mathbf{A} = \mathbf{b} \mathbf{c}$$

units of L/mol·cm

Phenomena used for optical measurements,

(1) Absorption (2) Emission (3) Luminescence (Fluorescence, Phosphorescence, Chemiluminescence (4)Scattering

In all cases, response is proportional to concentration of analyte

Many optical instruments share similar design

- (1) stable radiation source
- (2) transparent sample holder
- (3) wavelength selector
- (4) radiation detector
- (5) signal processor and readout

Fig 6-22

Radiation Sources:

Spectral region	VAC	UV	Visible	1	NEAR IR	► -	IR			FAR IR
) Sources (Ar lamp									· · ·
	· · · · · · · · · · · · · · · · · · ·	Xel	amo	· ·						
	H ₂	or D ₂ lam	p	╞╌┥		-				
Continuum			Tung	sten la	imp 	I				· .
		⊢—		N	ernst glow	er (ZrO ₂ +	Y ₂ O ₃)			-
						Nichron	ne wire (N	 i + Cr)		
L							Globa	 r (SiC)		
ſ		Hollow c	athode lam	ps		-				
Line {			 Та	Î						
	⊢ ⊢		La					i .		
) Detector		Photogra	phic plate	r 						ĺ
	·	Photom	ultiplier tul	be					}	
		Pł	iototube	<u> </u>						
Photon detectors		⊦ Sil	icon diode	1 						
	F	Charge-1	ransfer det	ector	⊢ ¶*			.		
	-					Photocor	ductor		 	
	-			. .	Therm	ocouple (v	oltage) or	bolom	eter (resista	ince)
				 		Go	lay pneum	atic ce	:11 T	
Thermal detectors		- +			Pyro	electric ce	ell (capacit	ance)		
the second se										

Continuum sources produce broad range of 's (often blackbody)

Heated solid (Globar, nichrome wire) (1-40 µm)

Tungsten lamp (300-3000 nm)

Quartz Tungsten Halogen (QTH) lamp (200-3000 nm)

high temperature (3500 K)

Evaporation W(s) W(g) $W(g) + I_2(g)$ WI₂(g) Redeposition WI₂(g) + W(s) W(s) + I₂(g)

D₂ lamp or Hg/Xe arc-lamp - (160-400 nm)

electronic excitation

 $D_2 + E_{electrical} \qquad D_2^* \quad D(KE_1) + D(KE_2) + h$ $KE_1 + KE_2 + h = E_{electrical} - BDE$

bond dissociation energy

Line Sources produce few discrete wavelengths

D₂ lamp or Hg/Xe arc-lamp (>400 nm)

Atomic emission hollow cathode lamp

(a) electron bombardment of cathode (b) sputtering of cathode atoms (c) emission from electronically excited cathode atoms

Fig. 9-11

Electrodeless discharge lamps (EDL)

(a) Ar ions created by RF energy (b) ions collide with gaseous metal atoms which then (c) emit excite (Fig. 9-12)

Laser

Light Amplification by Stimulated Emission of Radiation (a) pumping of excited state (b) stimulated emission to produce emission (Fig. 7-5)

(a) Pumping (excitation by electrical, radiant, or chemical energy)

(b) Spontaneous emission

(c) Stimulated emission

Population Inversion and Amplification:

Fig 7-6

Need population inversion for lasing

Cannot produce population inversion in 2-level system (stimulated emission becomes increasingly dominant). Need 3- or 4- levels

Lasing medium can be solid (Nd:YAG, semiconductor diode laser AlGaAs), gas (noble gas Ar+, He/Ne, CO₂, N₂) or liquid (dye)

(Fig. 7-4)

Advantages • intense

- monochromatic (line sources)
- pulsed $(10^{-15} 10^{-6} \text{ s})$ or continuous wave (cw)
- coherent
- small beam divergence

Wavelength Selectors:

(Fig. 7-2)

Wavelength, nm 10	00 20	00 40	00 70	00 100	00 20	00 40	000 70	000 10,0	000 20,	000	40,000
Spectral region	VAC	UV	Visible	N	EAR IR	▶4	IR			FAR	IR
(a) Materials for cells, windows, lenses, and prisms	F		L.F. Fused silic:	a or qua	artz	 					
			Core	x glass					1		
			5111		NaC						
					KBr					 	
	F				TIB	 r or TII 					-
							ZnSe				
(b) Wavelength selectors	Fluorite pr	rism Fu	sed silica or	r quartz	2 prism						
			0	Jlass pr	ism	<u>}</u> 1 }1					
Continuum {							NaCl pris	sm	 +		
									KBr pr	ism	1
	3000 1	ines/mm		Grat	tings			50 lin	ies/mm	<u> </u>	
					Interf	erence wea	dge		 		
			Interf			t I erence filters			 		
			GI	ass filt	ers						

Ideal Output:

Filters:

Absorption filter - colored glass or dye between two glass plates

Two filters can produce **narrower** band

Interference (Fabry-Perot) filter - two thin sheets of metal sandwiched between glass plates, separated by transparent material

Interference for transmitted wave through 1st layer and reflected from 2nd layer

Monochromators:

- Entrance slit
- Collimating lens or mirror
- Dispersion element (prism or grating)
- Focusing lens or mirror
- Exit slit

Prism: (many older instruments)

Short wavelengths refracted more!

Typical Prism Monochromator (Fig 7-16)

Diffraction Grating (most modern instruments)

Echellette grating:

Extra pathlength traveled by wave 2 *must* be n for constructive interference

$$n = d(\sin_i + \sin_r)$$

Closely-spaced parallel lines (for UV 1000-2000/mm, for IR 10-200/mm)

Example:

For $i=30^{\circ}$, $r=45^{\circ}$ and grating ruled at 2000 lines/mm (blazes)

n = d(sin _i + sin _r)
=
$$\frac{1 \text{ mm}}{2000}$$
 (sin 30° + sin 45°)
= 6.03x10⁻⁷ m or 603 nm

or
$$=\frac{603 \text{ nm}}{2} = 301.5 \text{ nm}$$
 (2nd order)
or $=\frac{603 \text{ nm}}{3} = 201 \text{ nm}$ (3rd order)...

Problem: Higher order diffraction gives different 's at same angle?Solution: Filters to reduce multiple order intensity

Grating Monochromator (Fig 7-17)

Quality of Monochromators:

(1) Spectral purity	scattered or stray light in exit beam
	Use entrance and exit windows, dust and light-tight housing, coat interior with light absorbing paint
(2) Dispersion	ability to separate small wavelength differences
	Linear dispersion or reciprocal linear dispersion - variation in across the focal plane
	$D = \frac{dy}{d} \qquad D^{-1} = \frac{d}{dy} = \frac{d}{nF}$
	(F is focal length). D ⁻¹ has units nm/mm etc.
(3) Light gathering	light collection efficiency
	<i>f</i> /number
	$f = \frac{F_{collimating mirror}}{dia}_{collimating mirror}$
(4) Spectral bandwidth	range of wavelengths exiting the monochromator
	Related to dispersion and entrance/exit slit widths
	Effective bandwidth = $\frac{\text{bandwidth}}{2} = \frac{1}{y} = D^{-1}$

Effect of slit width:

(Fig 7-22)

Fig. 7-23 (see also 7-24)

Complete *resolution* of two features only possible when slit is adjusted to produce effective bandwidth half (or less) of difference between 's

Sample Containers and Optics:

- Cuvettes
- Lenses
- Prisms, gratings, filters

Made of suitable material (see table 7-2):

Glass 400-3000 nm (vis-near IR) Silica/quartz 200-3000 nm (UV-near IR) NaCl 200-15,000 nm (UV-far IR)

Radiation Transducers:

Ideally:

- high sensitivity
- low noise
- wide wavelength response
- linear output (S= $k \cdot I$)
- low dark current (small current when I=0) (S= $k \cdot I + k_d$)

Photon Transducers:

(A) Photovoltaic cells - metal-semiconductor-metal sandwiches that produce voltage when irradiated (350-750 nm)

(B) **Phototube** - electrons produced by irradiation of cathode travel to anode. response depends on cathode material (200-1000 nm)

Fig. 7-27

(C) Photomultiplier tube (PMT) - irradiation of cathode produces electrons, series of anodes (dynodes) increases gain to 10⁵-10⁷ electrons per photon. Low incident fluxes only!

(D) Photodiode arrays - (multichannel transducer) photon striking ntype Si creates free electrons which travel to p-type Si. Many junctions in a row - spatially sensitive (Fig 7-31)

(E) Thermal detectors - sensitive to IR (>750 nm)

thermocouples - junction thermometer

bolometers - resistance thermometer

pyroelectric devices - piezoelectric effect

In many cases, dark current reduced by cooling transducer (250 K to 1.5 K) - reduces thermal excitation of electrons.