Mass Spectrometry (Chapter 20):

Based on ionization of gas phase molecule followed by analysis of the masses of the ions produced

The Mass Spectrum:

Graph of ion intensity versus mass-to-charge ratio (m/z) (units daltons, Da)

Fig 20-1

molecular ion peak (M+)

m/z corresponds to MW of singlycharged molecule

fragment peak

base peak

m/z less than MW of singly-charged molecule

most intense m/z

Instrument Components:

Fig 20-10

- sample introduction system vaporize sample
- ion source ionizes analyte gas molecules
- mass analyzer separates ions according to m/z
- detector counts ions
- vacuum system reduces collisions between ions and gas molecules

Ion sources:

Basic Type	Name and Acronym	Ionizing Agent
Gas phase	Electron impact (EI)	Energetic electrons
	Chemical ionization (CI)	Reagent gaseous ions
	Field ionization (FI)	High-potential electrode
Desorption	Field desorption (FD)	High-potential electrode
	Electrospray ionization (ESI)	High electrical field
	Matrix-assisted desorption/ionization (MALDI)	Laser beam
	Plasma desorption (PD)	Fission fragments from ²⁵² Cf
	Fast atom bombardment (FAB)	Energetic atomic beam
	Secondary ion mass spectrometry (SIMS)	Energetic beam of ions
	Thermospray ionization (TS)	High temperature

 TABLE 20-1
 Ion Sources for Molecular Mass Spectrometry

Hard ion sources leave excess energy in molecule - extensive fragmentation

Soft ion sources little excess energy in molecule - reduced fragmentation

Fig 20-2

Gas Phase Ion Sources:

(A) Electron Impact (EI) Ion Source:

Electron bombardment of gas/vapor molecules

$$M + e^{-}(\sim 70 \text{ eV})$$
 $M^{+} + 2e^{-}$ (about 10^{-4} % ionized)
Fig 20-3

Electron energy ~70 eV $1 \text{eV} \quad 1.6 \text{x} 10^{-19} \text{ C} \times 1 \text{ V} \quad (1 \text{ V} = 1 \text{ J} \text{ C}^{-1})$

 $=1.6 \times 10^{-19} \text{ J}$

 $= 96.486 \text{ kJ mol}^{-1}$

EI Spectra:

- hard source (incident energy 70 eV » than chemical bond)
- molecules electronically, vibrationally and rotationally excited
- extensive fragmentation fragment ions

TABLE 20-2 Some Typical Reactions in an Electron-Impact Source

Molecular ion formation		
Fragmentation	$ABCD + e^- \rightarrow ABCD^{++} + 2e^-$	
	$ABCD^{\bullet+} \rightarrow A^+ + BCD^{\bullet}$	
	$\longrightarrow A^{\bullet} + BCD^{+} \rightarrow BC^{+} + D$	
	$\longrightarrow CD^{\bullet} + AB^{+} \longrightarrow B^{+} A^{+}$	
	$ AB^{\bullet} + CD^{+} \longrightarrow D^{+} C^{+} \\ C + D^{+} $	
Rearrangement followed by fragmentation	$ABCD^{\bullet+} \rightarrow ADBC^{\bullet+} \longrightarrow BC^{\bullet} + AD^{+}$ $\rightarrow AD^{\bullet} + BC^{+}$	
Collision followed by fragmentation	$ABCD^{\bullet+} + ABCD \rightarrow (ABCD)^{\bullet2+} \rightarrow BCD^{\bullet} + ABCDA^{+}$	

- base peak $m/z \ll M^+$
- complex spectra
 - helps identification
 - poor for measuring MW of compound

Fragmentation patterns (Fig 20-4):

What about peaks at greater m/z than M+?

Two sources:

• Isotope Peaks - same chemical formula but different masses

$${}^{12}C^{1}H_{2}{}^{35}Cl_{2} m = 84$$

$${}^{13}C^{1}H_{2}{}^{35}Cl_{2} m = 85$$

$${}^{12}C^{1}H_{2}{}^{35}Cl^{37}Cl m = 86 \text{ heights vary with abundance}$$

$${}^{13}C^{1}H_{2}{}^{35}Cl^{37}Cl m = 87$$

$${}^{12}C^{1}H_{2}{}^{37}Cl_{2} m = 88$$

$${}^{13}C \text{ is } 1.1 \% 12C, 37Cl \text{ is } 32.5 \% 35Cl$$

• Collision Product Peaks - only common peak is proton transfer to give (M+1)+ peak (increases with increasing pressure)

Advantages of EI:

- high ion currents sensitive
- fragmentation aids identification

Disadvantages of EI:

- weak or absent M+ peak inhibits determination of MW
- molecules must be vaporized (MW < 10³ Da)
- molecules must be thermally stable during vaporization

(B) Chemical Ionization:

• Many modern MS instruments can perform chemical ionization in addition to EI

EI ionization in excess (analyte 10-100 ppm) of reactant gas

Most common reactant gas is methane

EI ionization of methane produces

 $CH_4^+ + CH_4 = CH_5^+ + CH_3$ $CH_3^+ + CH_4 = C_2H_5^+ + H_2$

These ions react with analyte:

$$CH_5^+ + A$$
 $CH_4 + AH^+$ proton transfer
 $C_2H_5^+ + A$ $C_2H_4 + AH^+$ proton transfer
 $C_2H_5^+ + A$ $C_2H_6 + (A - H)^+$ hydride elimination

analyte

- most common ions $(M+1)^+$ and $(M-1)^+$
- sometimes (M+17)+ (addition of CH5+) or (M+29)+ (addition of $C_2H5^+)$

Desorption/Ionization Sources:

Applicable to non-volatile (>10⁵ Da) or non-stable analytes Energy applied to analyte causing desorption and ionization Exact mechanisms still under investigation

(A) Electrospray Ionization (ESI):

- Explosion of charged droplets containing analytes
 - solution analyte pumped through charged (1-5 kV) capillary
 - small droplets become charged
 - solvent evaporates, drop shrinks, surface charge density increases
 - charge density reduced by expulsion of charged analyte molecules ("Coulomb explosion")

Soft ionization - little fragmentation

Easily adapted to FIA, capillary EP and HPLC

CEM 333 page 18.10

Very important technique for large (>10⁵ Da) thermally fragile molecules

- peptides
- proteins
- polymers
- oligonucleotides

Analytes may accumulate multiple charges in ESI

- M+, M2+, M3+...

Fig 20-9

(B) Fast Atom Bombardment (FAB):

Hard ionization - fragmentation Sample in glycerol solution Bombarded by high energy Ar or Xe atoms (few keV) Atoms and ions sputtered from surface (ballistic collision) Both M⁺ and M⁻ produced Applicable to small or large (>10⁵ Da) unstable molecules

(C) Matrix-Assisted Laser Desorption/Ionization (MALDI):

Soft ionization

- analyte dissolved in solution of UV-absorber and solvent
- solid crystals of analyte + absorber grow (matrix)
- pulsed laser fired at crystals in time-of-flight mass spectrometer (TOF-MS)
- molecular ion desorbed from crystal surface

MALDI spectrum contains

dimer, trimers...

multiply charged molecules

no fragmentation

Matrix	Wavelength (nm)	
Nicotinic acid	266, 220–290	
Benzoic acid derivatives:		
2,5-Dihydroxybenzoic acid	266, 337, 355	
Vanillic acid	266	
2-Amino-benzoic acid	266, 337, 355	
Pyrazine-carboxylic acid	266	
3-Aminopyrazine-2-carboxylic acid	337	
Cinnamic acid derivatives:		
Ferulic acid	266, 377, 355	
Sinapinic acid	266, 337, 355	
Caffeic acid	266, 337, 355	
3-Nitrobenzylalcohol	266	

TABLE 20-4Matrices Most Frequently Used for
MALDI Together with the Usable
Wavelengths*

*From M. Karas and U. Bahr, Trends Anal. Chem., 1990, 9, 322.

Matrix properties:

small MW

absorb UV

able to crystallize

Mass Analyzers:

Mass analyzers: separate ions to measure m/z and intensity

Resolution:

- ability to differentiate peaks of similar mass

$$R = \frac{\text{mean mass two peaks}}{\text{separation between peaks}} = \frac{\overline{m}}{m}$$

- resolution depends on mass!

- if R = 1000

separate peaks at m/z = 100 and 100.1

or m/z = 1000 and 1001

or m/z = 10000 and 10,000

- high resolution necessary for exact MW determination:

(A) <u>Magnetic Sector Analyzers</u>:

Fig 20-12

Kinetic energy of ion:

$$KE = z e V = \frac{1}{2}m v^2$$

charge (+1, +2...)velocity (m/s)electronic charge (1.6x10-19 C)mass (kg)potential difference (B-A)

Magnetic force:

$$F_B = B z e v$$

Centripetal force:

$$F_{\rm C} = \frac{m \ v^2}{r}$$

radius of sector (m)

For successful exit, two forces balance

B z e v =
$$\frac{m v^2}{r}$$
 v = $\frac{B z e r}{m}$
 $\frac{m}{z} = \frac{B^2 r^2 e}{2V}$

For fixed radius and charge can

(a) use permanent magnet, vary A and B potential (V)

or

(b) variable electromagnet, fixed A and B potential (V)

(B) Double-Focusing Analyzers:

Single-focusing magnetic sector analyzers have $R_{max} < 2000$

- (a) translational energy aberrations
- (b) angular aberrations

Addition of electrostatic analyzer simultaneously minimizes both (a)&(b)

Electrostatic analyzer focuses ions of unique m/z at entrance slit to magnetic sector

(C) Quadrupole Analyzers (see also 11 B-2):

Fig 11-4

- ions travel parallel to four rods
- opposite pairs of rods have rapidly alternating potentials (AC)
- ions try to follow alternating field in helical trajectories
- stable path only for one m/z value for each field frequency
- Harder to push heavy molecule $m/z_{max} < 2000$
- R_{max} ~ 500

(D) Time of Flight (TOF) Analyzers:

Generate pulse of ions (by laser, electrons) with same initial energy

Ions travel down field-free tube separate according to mass

- light ions arrive first, heavy ions arrive later

Unlimited mass range $m/z_{max} > 100 \text{ kDa}$

```
Poor resolution R_{max} < 1000
```

Poor sensitivity

Fig 11-8

Sample Introduction:

Fig 20-11

(A) External (Batch) Inlet Systems:

Sample heated (<400 °C) in small external oven Vapor admitted to ionizer through valve Gas stream added to entrain analyte

(B) Direct Probe

Sample vial inserted through air-lock into ionizer chamber

Vial heated to vaporize sample

Vial can be reduced to capillary or surface plate for small quantities

(C) Chromatography/Electrophoresis/Injection Analysis

Can be modified to directly flow into ionizer region

Applications of Molecular MS

Identification of Pure Compounds:

- (a) Nominal M⁺ peak (one m/z resolution) (or (M+1)⁺ or (M-1)⁺) gives MW (not EI)
- (b) Exact m/z (fractional m/z resolution) can give stoichiometry but not structure (double-focusing instrument)
- (c) Fragment peaks give evidence for functional groups
 - (M-15)+ peak methyl
 - (M-18)+ OH or water
 - (M-45)+ CO₂H
 - series (M-14)+, (M-28)+, (M-42)+... sequential CH₂ loss in alkanes
- (d) Isotopic peaks can indicate presence of certain atoms
 - Cl, Br, S, Si
- (e) Isotopic ratios can suggest plausible molecules from M^+ , $(M+1)^+$ and $(M+2)^+$ peaks
 - 13C/12C = 1.08 % 2H/1H = 0.015 %

 $(M+1)^+$ peak for ethane C₂H₆ should be (2x1.08)+(6x0.015) = 2.25% M⁺ peak

(f) Comparison with library spectra

Summary of MS

One of most powerful analytical tools:

- sensitive (10-6 to <10-13 g)
- range of ion sources for different situations
- elemental composition for small and large MW

- biomolecules

- limited structural information
- qualitative and quantitative analysis of mixtures
- composition of solid surfaces
- isotopic information in compounds

But:

- complex instrumentation
- expensive
 - high resolution
- structure obtained indirectly
- complex spectra/fragmentation for hard ionization sources
- simple spectra for soft ionization sources