Gas Chromatography (Chapter 27)

Two major types

- Gas-solid chromatography (stationary phase: solid)
- Gas-liquid chromatography

(stationary phase: immobilized liquid)

Retention Volume:

$$\underbrace{V_R = t_R F}_{\text{retained}} \qquad \underbrace{V_M = t_M F}_{\text{non-retained}}$$

average volumetric flow rate (mL/min)

F can be estimated by measuring flow rate exiting the column using soap bubble meter (some gases dissolving in soap solution)

but measured V_R and V_M depend on

- pressure inside column
- temperature of column

 V_R and V_M depend on **average** pressure inside column

Column has resistance to flow

At inlet,
$$P = high$$
, $F = low$
At outlet, $P = low$, $F = high$ $P = constant$

Pressure drop factor j used to calculate average pressure from inlet pressure P_{inlet} and outlet pressure P_{outlet}

$$j = \frac{3\left[\left(P_{inlet} / P_{outlet} \right)^{2} - 1 \right]}{2\left[\left(P_{inlet} / P_{outlet} \right)^{3} - 1 \right]}$$

Corrected Retention Volume:

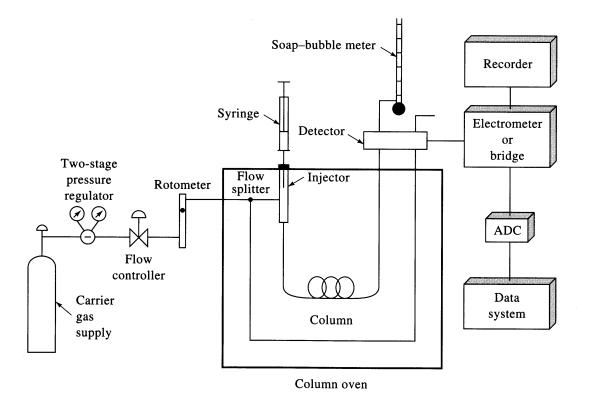
$$\mathbf{V}_{\mathbf{R}}^{0} = \mathbf{j} \ \mathbf{t}_{\mathbf{R}} \ \mathbf{F} \qquad \mathbf{V}_{\mathbf{M}}^{0} = \mathbf{j} \ \mathbf{t}_{\mathbf{M}} \ \mathbf{F}$$

Specific Retention Volume:

$$V_{g} = \frac{V_{R}^{0} - V_{M}^{0}}{M_{s}} \times \frac{273}{\underbrace{\frac{T_{column}}{T_{correction}}}_{for}}$$

mass of stationary phase

partition ratio c_s/c_m


$$V_{g} = \frac{K}{\frac{1}{\text{stationary}}} \times \frac{273}{T_{\text{column}}}$$

density of stationary phase

 $V_g\;$ - semi-useful parameter for identifying species eluting

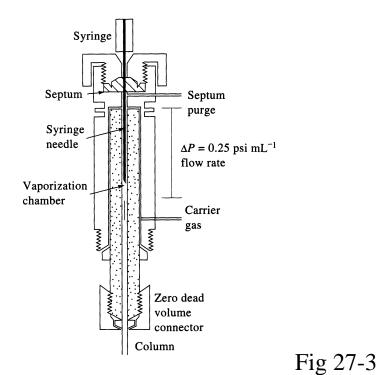
- often scales with vapor pressure (constant polarity analytes)

GC Instrumentation (Fig 27-1):

Carrier gas: He (common), N ₂ , H ₂	Carrier gas:	He (common), N ₂ , H ₂
---	--------------	--

Pinlet 10-50 psig

F=25-150 mL/min packed column


F=1-25 mL/min open tubular column

- Column: 2-50 m coiled stainless steel/glass/Teflon
- Oven: $0-400 \,^{\circ}\text{C} \sim \text{average boiling point of sample}$ accurate to <1 $\,^{\circ}\text{C}$
- **Detectors**: FID, TCD, ECD, (MS)

Sample injection:

- direct injection into *heated* port (>T_{oven}) using microsyringe

(i) 1-20 µL packed column (ii) 10-3 µL capillary column

- rotary sample valve with sample loop

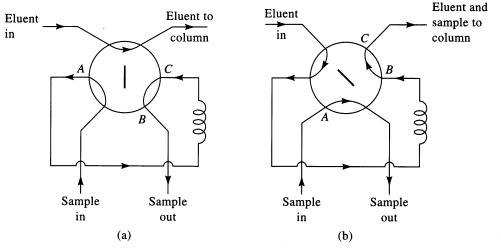
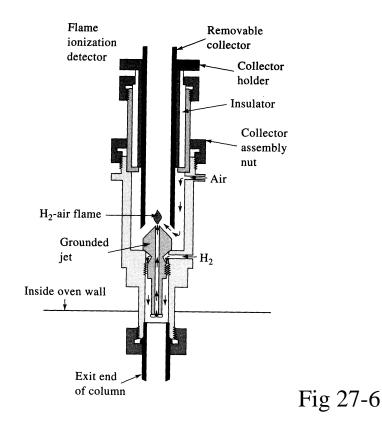


Fig 27-4

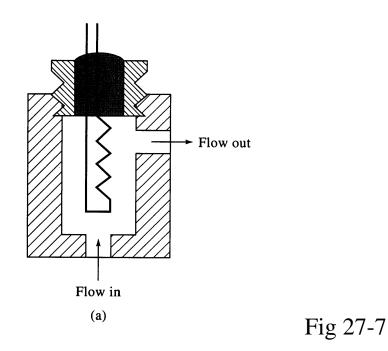
Split injection:	routine method		
	0.1-1 % sample to column		
	remainder to waste		
Splitless injection:	all sample to column		
	best for quantitative analysis		
	only for trace analysis, low [sample]		
On-column injection:	for samples that decompose above boiling point - no heated injection port		
	column at low temperature to condense sample in narrow band		
	heating of column starts chromatography		

GC Detectors:


Need

- Sensitive (10-8-10-15 g solute/s)
- Operate at high T (0-400 °C)
- Stable and reproducible
- Linear response

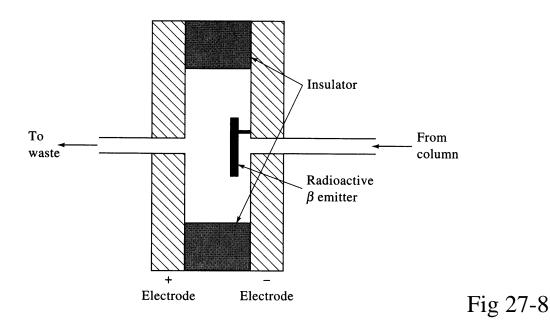
Desire


- Wide dynamic range
- Fast response
- Simple (reliable)
- Nondestructive
- Uniform response to all analytes

Flame Ionization Detector (FID):

- Rugged
- Sensitive (10-13 g/s)
- Wide dynamic range (107)
- Signal depends on # C atoms in organic analyte mass sensitive not concentration sensitive
- Weakly sensitive to carbonyl, amine, alcohol, amine groups
- Not sensitive to non-combustibles H₂O, CO₂, SO₂, NO_x
- Destructive

Thermal Conductivity Detector (TCD)



Thermal conductivity of He, H₂ much larger than organics

Organics cause T rise in filament

- Rugged
- Wide dynamic range (105)
- Nondestructive
- Insensitive (10-8 g/s) non-uniform

Electron Capture Detector (ECD):

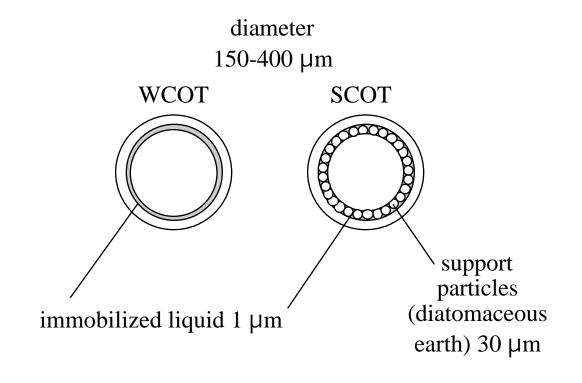
Electrons from -source ionize carrier gas

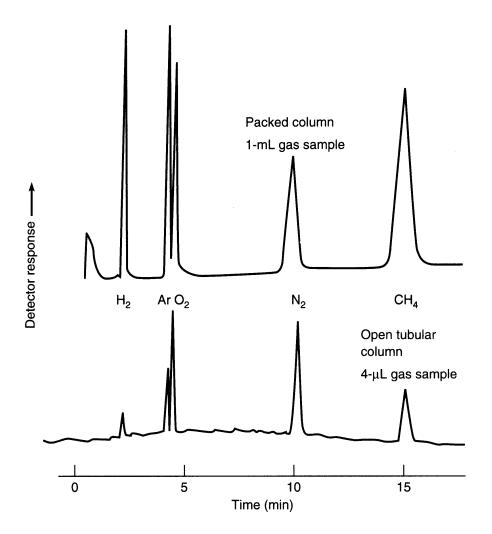
Organic molecules capture electrons and decrease current

- Simple and reliable
- Sensitive (10-15 g/s) to electronegative groups (halogens, peroxides)
- Largely non-destructive
- Insensitive to amines, alcohols and hydrocarbons
- Limited dynamic range (10²)

Important Other Detectors:

• AES, AAS, chemiluminescent reaction (S), mass spectrometer, FTIR

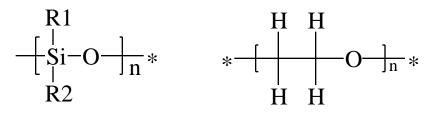

Column Stationary Phases:


Packed

- liquid coated silica particles (<100-300 µm diameter) in glass tube
- best for large scale but slow and inefficient

Capillary/Open Tubular

- wall-coated (WCOT) <1 μ m thick liquid coating on inside of silica tube
- support-coated (SCOT) 30 μ m thick coating of liquid-coated support on inside of silica tube
- best for speed and efficiency but only small samples



Immobilized Liquid Stationary Phases:

- low volatility
- high decomposition temperature
- chemically inert (reversible interactions with solvent)
- chemically attached to support (prevent "bleeding")
- appropriate k' and for good resolution

Many based on polysiloxanes or polyethylene glycol (PEG):

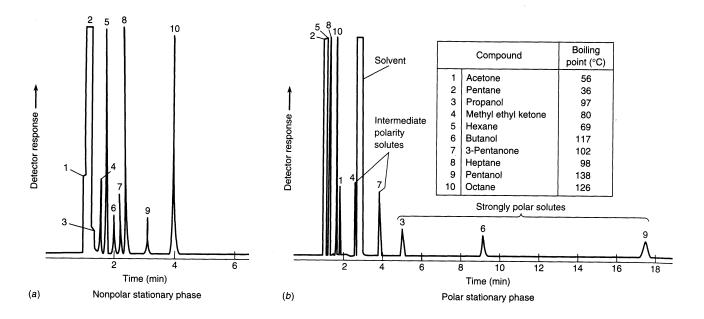
(Table 27-2)

TABLE 27-2 Some Common Stationary Phases for Gas-Liquid Chromatography

Stationary Phase	Common Trade Name	Maximum Temperature, °C	Common Applications
Polydimethyl siloxane	OV-1, SE-30	350	General-purpose nonpolar phase; hydrocarbons; polynuclear aromatics; drugs; steroids; PCBs
Poly(phenylmethyldimethyl) siloxane (10% phenyl)	OV-3, SE-52	350	Fatty acid methyl esters; alkaloids; drugs; halogenated compounds
Poly(phenylmethyl) siloxane (50% phenyl)	OV-17	250	Drugs; steroids; pesticides; glycols
Poly(trifluoropropyldimethyl) siloxane	OV-210	200	Chlorinated aromatics; nitroaromatics; alkyl-substituted benzenes
Polyethylene glycol	Carbowax 20M	250	Free acids; alcohols; ethers; essential oils; glycols
Poly(dicyanoallyldimethyl) siloxane	OV-275	240	Polyunsaturated fatty acids; rosin acids; free acids; alcohols

Stationary phases usually bonded and/or cross-linked

- bonding covalent linking of stationary phase to support
- cross-linking polymerization reactions after bonding to join individual stationary phase molecules

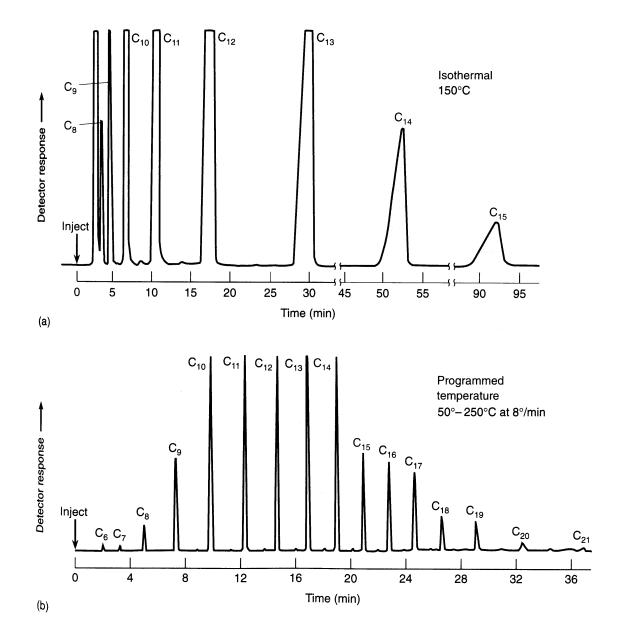

Non-polar stationary phases best for non-polar analytes

non-polar analytes retained preferentially

Polar stationary phases best for polar analytes

polar analytes retained preferentially

(Fig 17-4; Harris)



- Film thickness (0.1-5 µm) affects retention and resolution thicker films for volatile analytes, poorer resolutions
- Chiral phases being developed for enantiomer separation (pharmaceuticals)

Temperature Programming:

- As column temperature raised, vapor pressure analyte increases, eluted faster
- Raise column temperature **during** separation temperature programming separates species with wide range of polarities or vapor pressures

(Fig 17-6; Harris)

