
Potentiometry (Chapter 23)

Reference electrodes:

- reversible
- little hysteresis
- follows Nernst equation
- stable potential with time

Saturated Calomel Electrode (SCE):

 $Hg|Hg_2Cl_2(sat'd), KCl(a = x M)||...$

(Fig 23-1)

Half-cell for Calomel Electrode:

 $Hg_2Cl_2(s) + 2e^- 2Hg(l) + 2Cl^-$

Position of equilibrium affected by a_{Cl} - from KCl so E^0 depends on a_{Cl} -

Most common saturated calomel electrode SCE ([Cl-]~4.5 M)

Silver/Silver Chloride Electrode:

Similar construction to calomel

- Ag wire coated with AgCl
- solution of KCl sat'd with AgCl

Ag|AgCl(sat'd), KCl(a = x M)||...

 $\operatorname{AgCl}(s) + e^{-}$ $\operatorname{Ag}(s) + \operatorname{Cl}^{-}$

Again depends on a_{Cl}-, but commonly sat'd (~3.5 M)

Potential vs. SHE

Temperature, ℃	Electrode Potential (V), vs. SHE						
	0.1 M ^c Calomel ^a	3.5 M ^c Calomel ^b	Saturated ^c Calomel ^a	3.5 M ^{b,c} Ag/AgCl	Saturated ^{b,c} Ag/AgCl		
10		0.256		0.215	0.214		
12	0.3362		0.2528				
15	0.3362	0.254	0.2511	0.212	0.209		
20	0.3359	0.252	0.2479	0.208	0.204		
25	0.3356	0.250	0.2444	0.205	0.199		
30	0.3351	0.248	0.2411	0.201	0.194		
35	0.3344	0.246	0.2376	0.197	0.189		
38	0.3338		0.2355				
40		0.244		0.193	0.184		

TABLE 23-1 Potentials of Reference Electrodes in Aqueous Solutions

^aData from: R. G. Bates in *Treatise on Analytical Chemistry*, 2d ed., I. M. Kolthoff and P. J. Elving, Eds., Part I, Vol. 1, p. 793, Wiley: New York, 1978. ^bData from: D. T. Sawyer and J. L. Roberts Jr., *Experimental Electrochemistry for Chemists*, p. 42, Wiley: New York, 1974.

^c"M" and "saturated" refer to the concentration of KCl and not Hg₂Cl₂.

Which one?

- Ag/AgCl better for uncontrolled temperature (lower T coefficient)
- Ag reacts with more ions

Precautions in Use:

- Level of liquid inside reference electrode above analyte level to minimize contamination
- Plugging problematic if ion reacts with solution to make solid (e.g. AgCl in Cl- determination)

Measuring Concentration using Electrodes:

Indicator Electrodes for Ions:

Electrode used with reference electrode to measure potential of unknown solution

- potential proportional to ion activity
- specific (one ion) or selective (several ions)

 $E_{cell} = E_{indicator} - E_{reference}$

Two general types - metallic and membrane electrodes

Metallic Indicator Electrodes:

Electrodes of the first kind

- respond directly to changing activity of electrode ion Example: Copper indicator electrode

$$Cu^{2+} + 2e^{-} Cu(s)$$

$$K_{eq} = \frac{a_{Cu(s)}}{a_{Cu^{2+}}} = \frac{1}{a_{Cu^{2+}}}$$

$$E_{ind} = E^{0} - \frac{RT}{nF} \log K_{eq}$$

$$E_{ind} = E_{Cu/Cu^{2+}}^{0} - \frac{0.0592}{2} \log \frac{1}{a_{Cu^{2+}}}$$

$$= 0.337 \text{ V} - 0.296 \text{pCu}$$

BUT other ions can be reduced at Cu surface

- those with higher +ve E⁰ (better oxidizing agents than Cu) Ag, Hg, Pd...

In general, electrodes of first kind:

- simple
- not very selective
- some metals easily oxidized (deaerated solutions)
- some metals (Zn, Cd) dissolve in acidic solutions

• Electrodes of the second kind - respond to changes in ion activity through formation of complex

Example: Silver works as halide indicator electrode if coated with silver halide

Silver wire in KCl (sat'd) forms AgCl layer on surface

AgCl(s) + e⁻ Ag(s) + Cl⁻ E⁰ = +0.222 V

$$E_{ind} = +0.222 - \frac{0.0592}{n} \log a_{Cl^{-}}$$

= +0.222 + 0.0592pCl

• Electrodes of the third kind - respond to changes of different ion than metal electrode

Membrane (or Ion Selective) Electrodes:

Membrane:

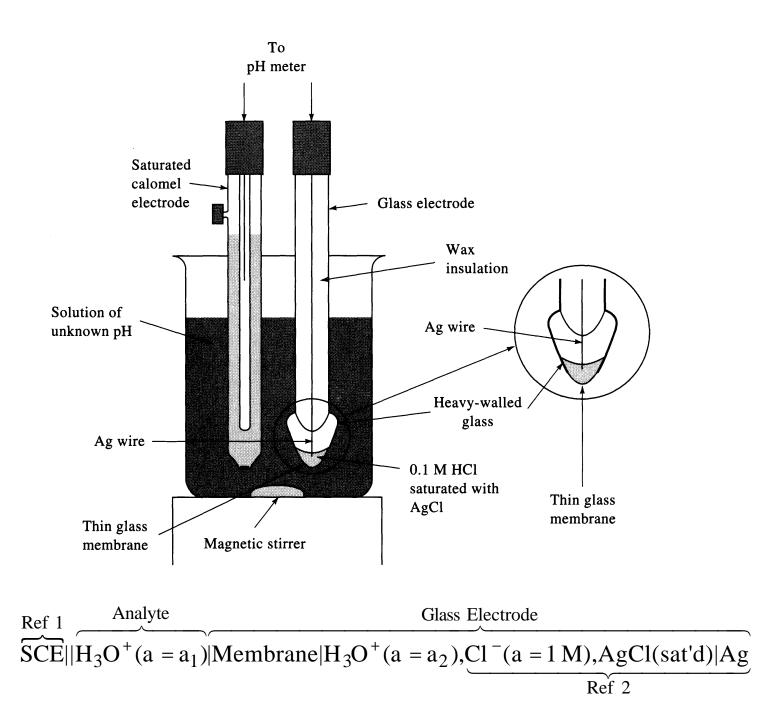
- Low solubility solids, semi-solids and polymers
- Some electrical conductivity often by doping
- Selectivity part of membrane binds/reacts with analyte

Two general types - crystalline and non-crystalline membranes

• Non-crystalline membranes:

Glass - silicate glasses for H+, Na+

Liquid - liquid ion exchanger for Ca²⁺

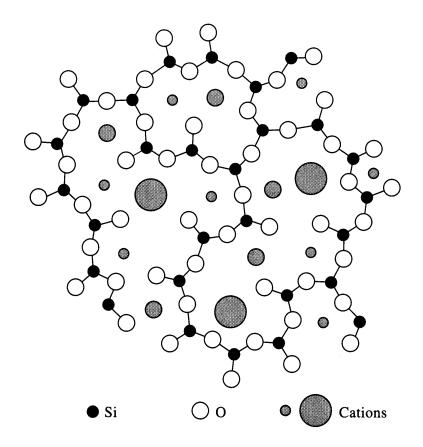

- Immobilized liquid liquid/PVC matrix for Ca2+ and NO₃-
- Crystalline membranes:

Single crystal - LaF₃ for F-

Polycrystalline or mixed crystal - AgS for S²⁻ and Ag⁺

Glass Membrane Electrodes:

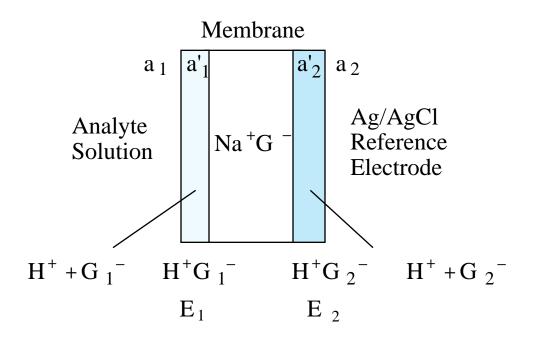
Fig 23-3


Combination pIon electrode (ref + ind) Contains two (reference) electrodes - glass membrane is pH sensitive

Glass Membrane Structure:

SiO₄⁴⁻ framework with charge balancing cations

- SiO₂ 72 %, Na₂O 22 %, CaO 6 %


Fig 23-5

In aqueous solution, ion exchange reaction at surface

 $H^+ + Na^+Glass^ H^+Glass^- + Na^+$

- H⁺ carries current near surface
- Na⁺ carries current in interior
- Ca²⁺ carries no current (immobile)

Surface where more dissociation occurs becomes negatively charge with respect to other surface

Boundary potential $E_b = E_1 - E_2$

Potential difference determined by

- E_{ref 1} SCE (constant)
- E_{ref 2} Ag/AgCl (constant)
- E_b

Now

$$E_{b} = E_{1} - E_{2} = 0.0592 \log \frac{a_{1}}{a_{2}}$$

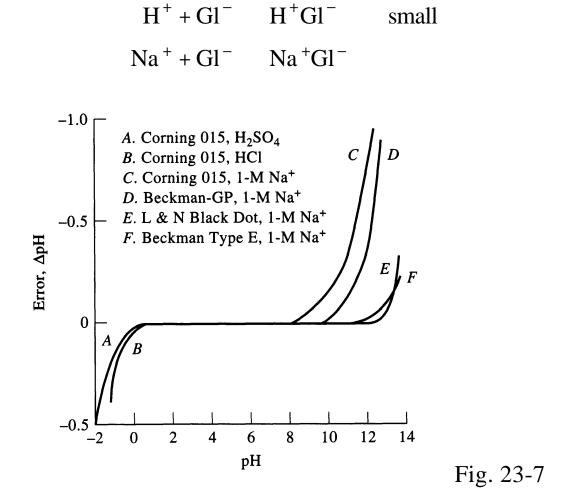
a₁=analyte

a₂=inside ref electrode 2

If a₂ is constant then

$$E_b = L + 0.0592 \log a_1$$

= L - 0.0592 pH
where L = -0.0592 log a_2


Since $E_{ref 1}$ and $E_{ref 2}$ are constant

$$E_{cell} = constant - 0.0592 \text{ pH}$$

Alkaline Error:

At high pH, glass electrode indicates pH less than true value

Low [H+] means membrane exchanges with alkali metal ions in solution too

Most accurate 0-10 (0.01-0.03 pH units)

Interference in Glass Membrane Electrodes:

Sensitive to

- H+
- alkali metal ions

Selectivity coefficients $(k_{X/Y})$ measure sensitivity to other ions

Range between 0 (no interference) to 1 (as sensitive to alkali and hydrogen ions) to >1 (large interference)

$$E_{ind} = constant - 0.0592log(a_{H^+} + k_{Na/H} a_{Na^+})$$

selectivity coefficient

Glass Electrodes for Other Ions:

Maximize $k_{H/Na}$ for other ions by modifying glass surface (usually adding Al_2O_3 or $B_2O_3)$

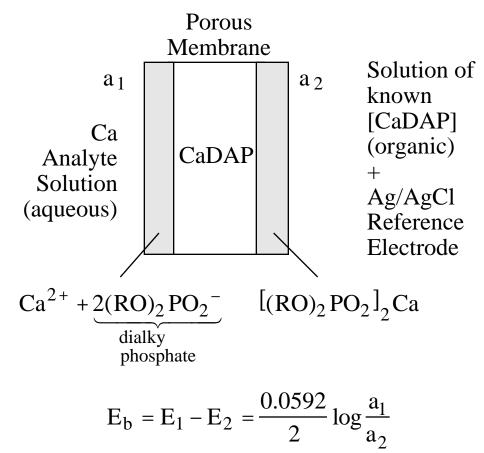
Possible to make glass membrane electrodes for

Na+, K+, NH4+, Cs+, Rb+, Li+, Ag+ ...

Crystalline Membrane Electrodes:

- Usually ionic compound
- Single crystal
- Crushed powder, melted and formed
- Sometimes doped (Li⁺) to increase conductivity
- Operation similar to glass membrane

$$\underbrace{\text{LaF}_2^+}_{\text{solid}} + \underbrace{\text{F}}_{\text{analyte}}^- \underbrace{\text{LaF}_3}_{\text{solid}}$$


Presence of F- analyte pushes equilibrium right, reduces +ve charge on electrode surface

$$E_{ind} = L + 0.0592 \log \frac{1}{a_{F^{-}}}$$
$$= L - 0.0592 \log a_{F^{-}}$$
$$= L + 0.0592 \text{ pF}$$

Liquid Membrane Electrodes:

- Based on potential that develops across two immiscible liquids with different affinities for analyte
- Porous membrane used to separate liquids

Example: Calcium dialkyl phosphate insoluble in water, but binds Ca²⁺ strongly

If a₂ is constant

$$E_{b} = N + \frac{0.0592}{2} \log a_{1}$$
$$= N - \frac{0.0592}{2} pCa$$

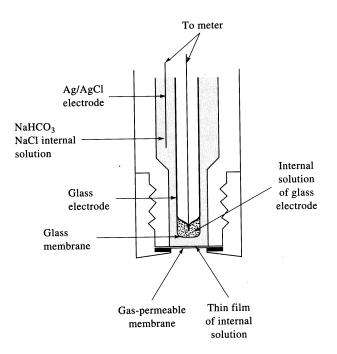
Analyte Ion	Concentration Range, M	Interferences ^c	
Ca ²⁺	10^{0} to 5×10^{-7}	$\begin{array}{l} 10^{-5}Pb^{2+};4\times10^{-3}Hg^{2+},H^{+},6\times10^{-3}Sr^{2+};2\times10^{-2}Fe^{2+};4\times10^{-2}Cu^{2+};\\ 5\times10^{-2}Ni^{2+};0.2NH_3;0.2Na^+;0.3Tris^+;0.3Li^+;0.4K^+;0.7Ba^{2+};1.0Zn^{2+};\\ 1.0Mg^{2+}\end{array}$	
BF ₄	10^0 to $7 imes 10^{-6}$	$ 5 \times 10^{-7} \text{ ClO}_{4}^{-}; 5 \times 10^{-6} \text{ I}^{-}; 5 \times 10^{-5} \text{ ClO}_{3}^{-}; 5 \times 10^{-4} \text{ CN}^{-}; 10^{-3} \text{ Br}^{-}; 10^{-3} \text{ NO}_{2}^{-}; 5 \times 10^{-3} \text{ NO}_{3}^{-}; 3 \times 10^{-3} \text{ HCO}_{3}^{-}; 5 \times 10^{-2} \text{ Cl}^{-}; 8 \times 10^{-2} \text{ H}_{2}\text{PO}_{4}^{-}, \\ \text{HPO}_{4}^{2-}, \text{PO}_{4}^{3-}; 0.2 \text{ OAc}^{-}; 0.6 \text{ F}^{-}; 1.0 \text{ SO}_{4}^{2-} $	
NO ₃	10^0 to $7 imes 10^{-6}$	$ \begin{array}{l} 10^{-7}\text{ClO}_4^-;5\times10^{-6}\text{I}^-;5\times10^{-5}\text{ClO}_3^-;10^{-4}\text{CN}^-;7\times10^{-4}\text{Br}^-;10^{-3}\text{HS}^-;\\ 10^{-2}\text{HCO}_3^-;2\times10^{-2}\text{CO}_3^{-2}^-;3\times10^{-2}\text{Cl}^-;5\times10^{-2}\text{H}_2\text{PO}_4^-,\text{HPO}_4^{2-},\text{PO}_4^{3-};0.2\\ \text{OAc}^-;0.6\text{F}^-;1.0\text{SO}_4^{2-} \end{array} $	
ClO ₄	10^0 to $7 imes 10^{-6}$	$2 \times 10^{-3} \text{ I}^-$; $2 \times 10^{-2} \text{ ClO}_3^-$; $4 \times 10^{-2} \text{ CN}^-$, Br^- ; $5 \times 10^{-2} \text{ NO}_2^-$, NO_3^- ; 2 HCO_3^- , $\text{CO}_3^{}$, Cl^- , H_2PO_4^- , HPO_4^{2} , PO_4^{3} , OAc^- , F^- , SO_4^{2}	
K+	10^{0} to 10^{-6}	$3 \times 10^{-4} \mathrm{Cs^+}; 6 \times 10^{-3} \mathrm{NH_4^+}, \mathrm{Tl^+}; 10^{-2} \mathrm{H^+}; 1.0 \mathrm{Ag^+}, \mathrm{Tris^+}; 2.0 \mathrm{Li^+}, \mathrm{Na^+}$	
Water Hardness $(Ca^{2+} + Mg^{2+})$	10^{-3} to 6×10^{-6}	$\begin{array}{l} 3\times10^{-5}Cu^{2+},Zn^{2+};10^{-4}Ni^{2+};4\times10^{-4}Sr^{2+};\\ 6\times10^{-5}Fe^{2+};6\times10^{-4}Ba^{2+};3\times10^{-2}Na^+;0.1\;K^+ \end{array}$	

TABLE	23-4	Liquid	Membrane	Electrodes ^{a,b}
		Liquiu	memorane	Licenoues

^aFrom: Handbook of Electrode Technology, pp. 10–13, Appendix, Orion Research: Cambridge, MA, 1982. With permission.

^bAll of the electrodes except the last are of the newer type in which the liquid ion exchanger or neutral carrier is supported in a plastic matrix. ^cThe numbers in front of each ion represent the molar concentration of that ion that gives a 10% error when the analyte concentration is 10^{-3} M.

Molecule Selective Electrodes:


- Gas Sensing Probes
- Biocatalytic Membranes

Gas Sensing Probes:

Simple electrochemical cell with two reference electrodes and gaspermeable PTFE membrane

allows small gas molecules to pass and dissolve into internal solution

Fig 23-11

Analyte not in direct contact with either electrode - dissolved

Mechanism:

$$\underbrace{CO_2(aq / g)}_{analyte} \qquad \underbrace{CO_2(g)}_{membrane pores} \qquad \underbrace{CO_2(aq)}_{internal solution}$$

in internal solution

$$CO_2(aq) + H_2O = H^+ + HCO_3^-$$

can use glass membrane electrode to sense pH!

If we write overall equation

$$\underbrace{\text{CO}_2(\text{aq})}_{\text{external analyte}} + \text{H}_2\text{O} \qquad \underbrace{\text{H}^+ + \text{HCO}_3^-}_{\text{internal solution}}$$
$$\underbrace{\text{H}^+ + \text{HCO}_3^-}_{\text{K}_{\text{eq}}} = \frac{a_{\text{H}^+} + a_{\text{HCO}_3^-}}{a_{\text{H}^+} + a_{\text{HCO}_3^-}}$$

$$K_{eq} = \frac{a_{CO_2}}{a_{CO_2}}$$
$$K_{eq} = \frac{K_g}{[CO_2]}$$

activity of neutral unaffected by other ions a_{CO2}=[CO₂]

SO

$$E_{ind} = L'' - 0.0592 \log \frac{K_g}{[CO_2]}$$

= L' +0.0592 log[CO₂]

Biocatalytic Membrane Electrodes:

Biosensors very important, much research effort

Immobilized enzyme bound to gas permeable membrane

Catalytic enzyme reaction produces small gaseous molecule (H+, NH₃, CO₂)

Then gas sensing probe measures change in gas concentration in internal solution

- Fast
- Very selective
- Used in vivo
- Expensive
- Only few enzymes immobilized
- Immobilization changes activity
- Limited operating conditions (pH, temperature, ionic strength)