Introduction to Electrochemistry (Chapter 22)

Many different electroanalytical methods:

- fast
- inexpensive
- in situ
- information about
 - oxidation states
 - stoichiometry
 - rates
 - charge transfer
 - equilibrium constants

Electrochemical Cells:

Oxidation and reduction (redox) reactions

Separate species to prevent direct reaction (Fig 22-1)

Most contain • external wires (electrons carry current)

- ion solutions (ions carry current)
- interfaces or junctions
- All contain complete electrical circuit
 - conducting electrodes (metal, carbon)

Electrons transferred at electrode surface at liquid/solid interface Potential difference (voltage) is measure of tendency to move to equilibrium

Galvanic cell - cell develops spontaneous potential difference

Overall:	$Zn(s) + Cu^{2+}$	(aq)	$Zn^{2+}(aq)$	+Cu(s)
Half reactions:	Zn(s)	Zn ²⁺	$+2e^{-}$	Oxidation
	$Cu^{2+} + 2e^{-}$	Cu(s)	Reduction

Convention:Reduction at CathodeOxidation at Anode

Galvanic cell - Zn anode (negative), Cu cathode (positive)

Electrolytic cells - require potential difference greater than galvanic potential difference (to drive away from equilibrium)

	Zn(s)	$\operatorname{Zn}^{2+} + 2e^{-}$	Oxidation	n Galvanic call	
Cu ²⁺	+ + 2e ⁻	Cu(s)	Reduction		
Zn ²⁺	+2e ⁻	Zn(s)	Reduction	Electrolytic cell	
	Cu(s)	$Cu^{2+} + 2e^{-}$	Oxidation		

Electrolytic cell - Zn cathode (positive), Cu anode (negative)

Many chemically reversible cells

Short-Hand Cell notation:

Convention: Anode on Left

$Zn|ZnSO_4(0.01 M)||CuSO_4(0.01 M)|Cu$

liquid-liquid interface

Galvanic cell as written Electrolytic cell if reversed Not all cells have liquid-liquid junctions (Fig 22-3)

AgCl (s)
$$Ag^+(aq) + Cl^-(aq)$$

 $H_2(g)$ $H_2(aq)$
Cathode: $Ag^+(aq) + e^ Ag(s)$
Anode: $H_2(aq)$ $2H^+(aq) + 2e^-$
Overall: $2AgCl(s) + H_2(g)$ $2Ag(s) + 2H^+ + 2Cl^-$

 $Pt,H_2(p = 1atm)|H^+(0.01 M),Cl^-(0.01 M),AgCl(sat'd)|Ag$

Electrode Potentials:

• Cell potential is **difference** between anode and cathode potential

 $E_{cell} = E_{cathode} - E_{anode}$

when half-reactions written as reductions

Example:

$$2AgCl(s) + H_2(g) \qquad 2Ag(s) + 2H^+ + 2Cl^-$$
$$2AgCl(s) + 2e^- \qquad 2Ag(s) + 2Cl^-$$
$$2H^+ + 2e^- \qquad H_2(g)$$

electrons on left

Galvanic cell Ecell=Ecathode-Eanode=+0.46 V

Can't measure potential on each electrode independently - only differences

Standard reference electrode is usually standard hydrogen electrode (SHE)

$$Pt, H_2(p = 1.00 \text{ atm})|H^+(a_{H^+} = 1.00 \text{ M})||...$$

Fig 22-5

SHE:

- assigned 0.000 V
- can be anode or cathode
- Pt does not take part in reaction
- Pt electrode coated with fine particles (Pt black) to provide large surface area
- cumbersome to operate

Alternative reference electrodes:

• Ag/AgCl electrode

• Calomel electrode

$$Hg_{2}Cl_{2}(s) + 2e^{-} 2Cl^{-} + 2Hg(l)$$
$$E_{cell} = +0.24 \text{ V vs. SHE}$$

Electrode and Standard Electrode Potentials (E and E⁰):

How do we know which way reaction will go spontaneously?

Use electrode potentials, E (potential of electrode versus SHE) to find E_{anode} and $E_{cathode}$. Then find E_{cell} .

But electrode potential varies with activity of ion (appendix 2)

activity

activity coefficient

 $a_X = X [X]$

concentration

x varies with presence of other ions (ionic strength)

$$\mu = \frac{1}{2} \left([X] Z_X^2 + [Y] Z_Y^2 + ... \right)$$

concentration

charge

Note: activity of pure liquid or solid in excess=1.00

Note: use pressure (atm) for gases

If a=1.00 M, the electrode potential, E, becomes *standard* electrode potential, E^0

Appendix 3:

$Cu^{2+} + 2e^{-}$	Cu(s)	$E^0 = +0.337 V$
$2H^{+} + 2e^{-}$	$H_2(g)$	$E^0 = +0.000 V$
$Cd^{2+} + 2e^{-}$	Cd(s)	$E^0 = -0.403 V$
$Zn^{2+} + 2e^{-}$	Zn(s)	$E^0 = -0.763 V$

Cell containing Cu/Cu²⁺ and Cd/Cd²⁺

called couple

(3) Cu²⁺ good electron acceptor (oxidizing agent)
 Cd good electron donor (reducing agent)

The most positive E or E⁰ spontaneously forward forming cathode

Calculation of Cell Potentials, Ecell:

 $E_{cell} = E_{cathode} - E_{anode}$ when written as reductions

Example:

 $Zn|ZnSO_{4}(a_{Zn^{2+}} = 1.00)||CuSO_{4}(a_{Cu^{2+}} = 1.00)|Cu$ anode $Zn^{2+} + 2e^{-} Zn \quad E^{0} = -0.763 V$ $Cu^{2+} + 2e^{-} Cu \quad E^{0} = +0.337 V$

Zn reaction spontaneously backward - forms negative electrode - place of oxidation - anode

If a=1.00 M, E=E⁰:

$$E_{cell} = E_{cathode} - E_{anode}$$

= +0.337 - (-0.763)
= +1.100 V

Spontaneous reaction is galvanic $Cu^{2+} + Zn$ $Cu + Zn^{2+}$

 E_{cell} indicates if reaction is spontaneous as written E_{cell} positive - reaction forward E_{cell} negative - reaction backwards Electrode potential is related to position of equilibrium

$$2AgCl(s) + H_{2}(g) = 2Ag(s) + 2Cl^{-}(aq) + 2H^{+}(aq)$$
$$K_{eq} = \frac{a_{Ag}^{2} a_{Cl}^{-} a_{H^{+}}^{2}}{a_{AgCl}^{2} p_{H_{2}}}$$
$$K_{eq} = \frac{a_{Cl}^{-} a_{H^{+}}^{2}}{p_{H_{2}}}$$

If reaction is long way from thermodynamic equilibrium, K will change with time

Eventually, concentrations reach equilibrium values and K stops changing (true equilibrium constant K_{eq})

In general:

$$pP + qQ + ne^{-} rR + sS$$

$$E = E^{0} - \frac{0.0592}{n} \log K_{eq}$$

$$E = E^{0} - \frac{0.0592}{n} \log \frac{(a_{R})^{r} (a_{S})^{s}}{(a_{P})^{p} (a_{Q})^{q}}$$

Nernst Equation

In principle, can calculate E and E_{cell} from E^0 for any activity from Nernst equation:

$$pP + qQ + ne^{-} rR + sS$$
$$E = E^{0} - \frac{0.0592}{n} \log \frac{(a_{R})^{r} (a_{S})^{s}}{(a_{P})^{p} (a_{Q})^{q}}$$

- E=E⁰ when log quotient in Nernst equation is unity
- E⁰ is relative to SHE
- E⁰ is measure of driving force for half-cell reduction

Limitations of Standard Electrode Potentials:

- (1) E^0 is temperature dependent
- (2) Substitution of concentration for activity always introduces error. Error is worse at high ionic strength
- (3) Formation of complexes, association, dissociation alter E^0

Formal potentials (E⁰) apply for specific reactions when specifying ALL concentrations (Appendix 3)

What happens at electrode surface?

Electrons transferred at electrode surface by redox reactions - occur at liquid/solid interface (solution/electrode)

Electrical double layer formed (Fig 22-2)

- (i) Tightly bound inner layer
- (ii) Loosely bound outer layer

Faradaic currents:

proportional to species concentration

due to redox reaction

Non-faradaic currents:

charging of double layer (capacitance)

not due to redox reactions

Redox reactions happen close to electrode surface (inner part of double layer - ${<}10$ Å)

Continual mass transport of ions to electrode surface by

- (i) convection (stirring, liquid currents)
- (ii) diffusion (concentration gradient)
- (iii) migration (electrostatic force)

Types of Electroanalytical Techniques:

Fig 22-9

