
<u>CEM 333</u> <u>Instrumental Analysis</u>

Simon J. Garrett Room: CEM 234 Phone: 355 9715 ext 208 E-mail: garrett@cem.msu.edu Lectures: Tuesday, Thursday 9:00-9:50 am Room 136 Office Hours: Tuesdays 10:00-11:00 am

Course Objectives

Teach fundamentals of instrumental analysis

Lecture: Discuss theory and background for

- (1) chemical/physical property measured
- (2) origin of chemical/physical property
- (3) instrument design and nature of response
- (4) signal processing and relationship between readout to property measured

Laboratory: Provides hands-on experience in

- (1) relating lecture material to practical analysis
- (2) design and operation of a real instrument
- (3) measurements on range of instruments
- (4) example analyses to illustrate value of technique

Introduction (Chapter 1)

Classification of Analytical Methods

Qualitative instrumental analysis is that measured property indicates *presence* of analyte in matrix

Quantitative instrumental analysis is that magnitude of measured property is proportional to *concentration* of analyte in matrix

Species of interest

All constituents including analyte. Matrix-analyte =concomitants

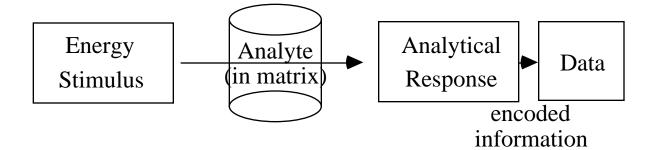
Often need pretreatment - chemical extraction, distillation, separation, precipitation

(A) Classical:

Qualitative - identification by color, indicators, boiling points, odors

Quantitative - mass or volume (e.g. gravimetric, volumetric)

(B) Instrumental:


Qualitative - chromatography, electrophoresis and identification by measuring physical property (e.g. spectroscopy, electrode potential)

Quantitative - measuring property and determining relationship to concentration (e.g. spectrophotometry, mass spectrometry)

Often, same instrumental method used for qualitative and quantitative analysis

Types of Instrumental Methods:

Property	Example Method	
Radiation emission	Emission spectroscopy - <u>fluorescence</u> , phosphorescence, luminescence	
Radiation absorption	Absorption spectroscopy - <u>spectrophotometry</u> , photometry, nuclear magnetic resonance, electron spin resonance	
Radiation scattering	Turbidity, Raman	
Radiation refraction	Refractometry, interferometry	
Radiation diffraction	X-ray, electron	
Radiation rotation	Polarimetry, circular dichroism	
Electrical potential	Potentiometry	
Electrical charge	Coulometry	
Electrical current	<u>Voltammetry</u> - amperometry, polarography	
Electrical resistance	Conductometry	
Mass	Gravimetry	
Mass-to-charge ratio	Mass spectrometry	
Rate of reaction	Stopped flow, flow injection analysis	
Thermal	Thermal gravimetry, calorimetry	
Radioactivity	Activation, isotope dilution	
(Often combined with <u>chromatographic</u> or <u>electrophoretic</u> methods)		

Example:

Spectrophotometry

Instrument: spectrophotometer Stimulus: monochromatic light energy Analytical response: light absorption Transducer: photocell Data: electrical current Data processor: current meter Readout: meter scale

<u>Data Domains:</u> way of encoding analytical response in electrical or non-electrical signals.

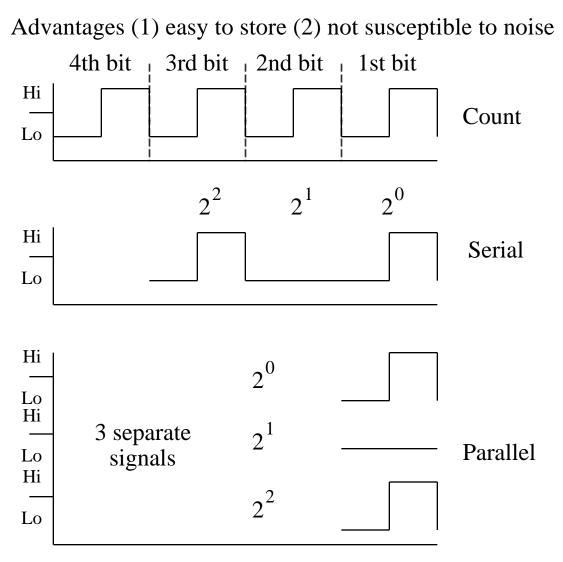
Interdomain conversions transform information from one domain to another.

Light Intensity Photocell Current Current Meter Scale

Detector (general): device that indicates change in environment

Transducer (specific): device that converts non-electrical to electrical data

Sensor (specific): device that converts chemical to electrical data


Non-Electrical Domains	Electrical Domains
Physical (light intensity, color)	Current
Chemical (pH)	Voltage
Scale Position (length)	Charge
Number (objects)	Frequency
	Pulse width
	Phase
	Count
	Serial
	Parallel

<u>Time</u> - vary with time (frequency, phase, pulse width)

<u>Analog</u> - continuously variable magnitude (current, voltage, charge) <u>Digital</u> - discrete values (count, serial, parallel, number*)

CEM 333 page 1.6

Digital Binary Data

20=1, 21=2, 22=4...

<u>Performance Characteristics: Figures of Merit</u> How to choose an analytical method? How good is measurement?

How reproducible? - Precision How close to true value? - Accuracy/Bias How small a difference can be measured? - Sensitivity What range of amounts? - Dynamic Range How much interference? - Selectivity

Precision - Indeterminate or random errors

Absolute standard deviation: $s = \sqrt{\frac{i-N}{i-0}(x_i - \overline{x})^2}$

Variance: s^2

Relative standard deviation: RSD = $\frac{s}{\overline{x}}$

Standard deviation of mean: $s_m = \frac{s}{\sqrt{N}}$

<u>Accuracy</u> - Determinate errors (operator, method, instrumental) Bias: bias = $\overline{x} - x_{true}$

Sensitivity

Calibration sensitivity:
$$S = \frac{dSignal}{dc}c + Signal_{blank}$$
$$= mc + Signal_{blank}$$

(larger slope of calibration curve m, more sensitive measurement)

Detection Limit

Signal must be bigger than random noise of blank

Minimum signal: Signal $_{min} = Av. Signal _{blank} + ks_{blank}$

From statistics k=3 or more (at 95% confidence level)

Dynamic Range

At detection limit we can say confidently analyte is present but cannot perform reliable quantitation

Level of quantitation (LOQ): k=10

Limit of linearity (LOL): when signal is no longer proportional to concentration

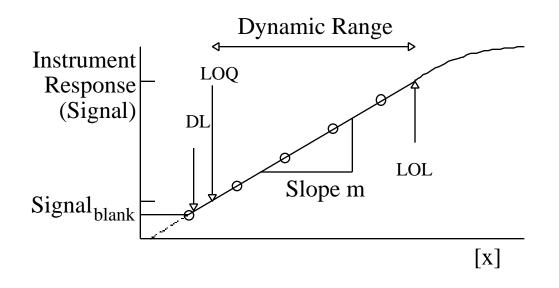
Dynamic range: $\frac{\text{LOL}}{\text{LOQ}}$ 10² to > 10⁶

Selectivity:

No analytical method is completely free from interference by concomitants. Best method is more *sensitive* to analyte than interfering species (interferent).

Matrix with species A&B: Signal = $m_A c_A + m_B c_B + Signal_{blank}$

Selectivity coefficient: $k_{B,A} = \frac{m_B}{m_A}$


k's vary between 0 (no selectivity) and large number (very selective).

Calibration methods

Basis of *quantitative* analysis is magnitude of measured property is proportional to *concentration* of analyte

Signal [x] or Signal = m[x] + Signal_{blank} $[x] = \frac{Signal - Signal_{blank}}{m}$

Calibration curves (working or analytical curves)

Example (if time):

Analyte Concentration (ppm*)	Absorbance
0.0 (blank)	0.05
0.9	0.15
2.0	0.24
3.1	0.33
4.1	0.42

*ppm=1 µg per L

Define Variance and Covariance:

$$S_{xx} = \frac{(x_i - \bar{x})^2}{N - 1} \quad S_{xy} = \frac{(x_i - \bar{x})(y_i - \bar{y})}{N - 1}$$

$$\bar{x} = 2.02 \quad \bar{y} = 0.238$$

$$S_{xx} = \frac{(2.02^2 + 1.12^2 + 0.02^2 + 1.08^2 + 2.08^2)}{4} = \frac{10.828}{4} = 2.707$$

$$S_{xy} = \frac{(-2.02 \times -0.188) + (-1.12 \times -0.088) + (-0.02 \times 0.002) + ...}{4}$$

$$= \frac{0.9562}{4} = 0.23905$$

Slope: $m = \frac{S_{xy}}{Sx} = \frac{0.23905}{2.707} = 0.0883$
 $b = \bar{y} - m\bar{x}$
Intercept: $= 0.238 - (0.0883 \times 2.02)$
 $= 0.0596$

Calibration expression is

Absorbance=0.0883[Analyte (ppm)]+0.0596

CEM 333 page 1.12