电势一pH 图及其应用

一个电对的平衡电势的数值反映了电对物种的氧化还原能力。平衡电势的数值与反应物质的活度或 逸度有关,对有 H^+ 离子或 OH^- 离子参与的反应来说,电极电势将随溶液 pH 值的变化而变化。因此,以电极电势为纵坐标,以 pH 值为横坐标,根据奈斯特方程式算出电极电势(φ)随 pH 值的变化并绘成图 形,即得 φ -pH 图。 φ -pH 图首先由比利时学者鲍贝(Pourbaix)和他的同事们在 20 世纪 30 年代为研究 金属腐蚀问题而提出来的,以后,在电化学、无机化学、化学分析、地质和冶金学等方面都有广泛的应 用。

从 φ - pH 图上,我们可以看出一个电化学体系中,发生各种化学或电化学反应所必须具备的电极电势和溶液 pH 值条件,或者可以判断在给定条件下某化学反应或电化学反应进行的可能性。

1 电势一pH 图的建立

最简单的 φ —pH 图只涉及一个电对或一个元素,较复杂的 φ —pH 图包括多种元素和水等所组成的多元体系。

例如,反应 $H_3AsO_4 + 2I^- + 2H^+ \Longrightarrow H_3AsO_3 + I_2 + H_2O$ 涉及两个半反应或两个电对。

其中氧化半反应 $2I^--2e=I_2$,其电势不受 pH 值的变化所影响,若相关物种均处于标准态,则 $\varphi=\varphi^{\ 0}=0.544\ {
m V}$ 。

而还原半反应
$$H_3AsO_4 + 2H^+ + 2e = H_3AsO_3 + H_2O$$

$$\varphi(H_3AsO_4/H_3AsO_3) = \varphi^{\Theta}(H_3AsO_4/H_3AsO_3) + \frac{0.0591}{2} lg \frac{[H_3AsO_4][H^+]^2}{[H_3AsO_3]}$$

假定 $[H_3AsO_4]=[H_3AsO_3]=1$ mol • L^{-1} ,则 $\varphi=\varphi^{-\Theta}-0.0591pH=0.56-0.0591pH$,显然它与溶液的 pH 值有关。取 pH 从 0 到 14 间的若干值,分别代入上述方程进行计算,便得到电对 H_3AsO_4/H_3AsO_3 的电势值。

于是,以 φ 对 pH 作图可以得到如图 1 所示的该反应所涉及到的 I_2/I^- 和 H_3AsO_4/H_3AsO_3 两个电对的 φ —pH 图。

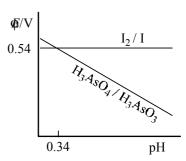


图 1 I₂/I⁻和 H₃AsO₄/H₃AsO₃ 电对的 φ-pH 图

2 φ-pH 线

2.1 化学反应和电极反应的平衡条件

在一个较为复杂的电化学体系中,可以出现三种类型的反应,反映在 φ 一pH图中,他们是三种不同类型的线段。

1 电极电势与pH值无关的电极反应

这类电极反应的通式为:

氧化态+ne → 还原态

其 φ 值与pH值无关,反映在 φ 一pH图上是一条平行于横坐标的直线,即水平线。如 $I_2+2e=2I^-$,在电对平衡式中没有 H^+ 或OH $^-$ 出现。

2 一种有H⁺(或OH⁻)参与但不涉及电子转移的化学反应

这类反应的通式为:

$$A+H^+(OH^-) \rightarrow B+H_2O$$

其化学平衡式中没有电子的得失,如 $Fe^{2+}+2OH^-=Fe(OH)_2$,反应与电极电势无关,只与介质的 pH 值有关。反映在 φ —pH 图上是一条垂直于横坐标的直线,即垂线。一条垂线对应一个反应物或生成物的确定的活度或逸度。

3 电极电势与pH值有关的电极反应

这类电极反应的通式为:

氧化态
$$+ H^{+}(OH^{-}) + ne \rightarrow 还原态 + H_2O$$

 $\text{如H}_3\text{AsO}_4 + 2\text{H}^+ + 2\text{e} = \text{H}_3\text{AsO}_3 + \text{H}_2\text{O}$,其电极电势随pH值的变化而变化,反映在 φ —pH图上为一斜

线。其斜率大小说明pH值对E的影响。

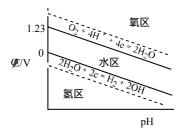
2.2 H₂O 的 φ-pH 曲线

在一些较复杂的体系中,往往需要知道某种物质相对于 H_2O 的稳定性,所以需要画出 H_2O 作为氧化剂(水中的 H^+ 得电子被还原为 H_2O)和 H_2O 作为还原剂(H_2O 失电子被氧化为 O_2)的两条 φ —pH 曲线。

 H_2O 作为氧化剂 $2H_2O+2e=H_2+2OH^-$

$$\varphi(H_2O/H_2) = \varphi^{\Theta}(H_2O/H_2) + \frac{0.0591}{2} \lg \frac{1}{p(H_2)[OH^{-}]^2}$$

 $\phi p(H_2) = 100 \text{ kPa}$,并代入 $\phi (H_2O/H_2)$ 数值得: $\phi(H_2O/H_2) = -0.0591 \text{ pH}$


 H_2O 作为还原剂 $O_2+4H^++4e=2H_2O$

$$\varphi(O_2/H_2O) = \varphi^{\Theta}(O_2/H_2O) + \frac{0.0591}{4} \lg P(O_2)[H^+]^4$$

 $\phi_p(O_2) = 100 \text{ kPa}$,并代入 $\phi^{\Theta}(O_2/H_2O)$ 数值得: $\phi(O_2/H_2O) = 1.229 - 0.0591 \text{pH}$

以E为纵坐标,pH为横坐标作图,就得到图2所示水的 $\varphi-pH$ 图。图中 $O_2+4H^++4e=2H_2O$ 线被称

为氧线,因为它表示,凡电对的 φ —pH线在此线段以上的物质,其氧化态都会氧化水,放出氧。任何一种氧化剂,若处于氧线之下,它就不可能把 H_2O 氧化为 O_2 。因此,线段以上部分为氧稳定区,线段下方为水稳定区,分别被称为氧区与水区。图中下方的线段是电极反应 $2H_2O+2e=H_2+2OH^-$ 的平衡线,称为氢线。它表示,凡电对的 φ —pH线在此线段下方的电对,其还原态将会与 H_2O 反应放出氢。任何一种还原剂,若处于氢线之上,它就不可能把 H_2O 中的 H^+ 还原为 H_2 。因此氢线下方是 H_2 的稳定区,称为氢区,上方为 H_2O 的稳定区,即水区。凡电对的 φ —pH图处于氧线和氢线之间(即水区)的电对,在水溶液中无论是氧化态或是还原态,他们都可以稳定存在。

图 2 水的 φ-pH

实际上,由于电极过程放电速度缓慢,尤其是气体电极反应放电迟缓,实际析出氧气和氢气的电极反应所需电压分别比理论值要大0.5V和小0.5V左右。因此,实际上的 $\phi(O_2/H_2O)$ — $pHD_2\phi(H_2O/H_2)$ —pH30.5V(图2虚线)。

2.3 Fe-H₂O体系的φ-pH图

对水溶液中不同的Fe的物种,如果略去像桥氧二聚体那样的次要物种,我们可以写出下面方程:

① 对于 $Fe^{2+} + 2e \rightarrow Fe$

$$\varphi(\text{Fe}^{2+}/\text{Fe}) = \varphi^{\Theta} (\text{Fe}^{2+}/\text{Fe}) + 0.0591/2 \text{ lg}[\text{Fe}^{2+}]$$

显然它不受pH值的影响,令 $[Fe^{2+}]=0.01$ mol·L⁻¹,则 $\varphi=-0.44-0.05$ 91=-0.50 V

② $\sqrt[3]{+} Fe^{3+} + e \rightarrow Fe^{2+}$

$$\varphi(\text{Fe}^{3+}/\text{Fe}^{2+}) = \varphi^{\Theta} (\text{Fe}^{3+}/\text{Fe}^{2+}) + 0.0591 \text{ lg}[\text{Fe}^{3+}]/[\text{Fe}^{2+}]$$

它也不受pH值的影响,令 $[Fe^{3+}]=[Fe^{2+}]=0.01 \text{mol} \cdot L^{-1}$,则 $\varphi(Fe^{3+}/Fe^{2+})=\varphi^{-\Theta}$ $(Fe^{3+}/Fe^{2+})=0.771 \text{ V}$

③ 对于 Fe(OH)₂+2e → Fe+2OH⁻

$$\varphi[\text{Fe}(\text{OH})_2/\text{Fe}] = \varphi^{\Theta} [\text{Fe}(\text{OH})_2/\text{Fe}] + 0.0591/2 \text{ lg}1/[\text{OH}^-]^2$$

$$= \varphi^{\Theta} + 0.0591/2 \text{ lg}[\text{H}^+]^2/K_w^2$$

$$= -0.05 - 0.0591 \text{pH}$$

同理, ④ 对于Fe(OH)₃+e → Fe(OH)₂+OH

$$\varphi[Fe(OH)_3/Fe(OH)_2] = 0.27 - 0.0591pH$$

⑤ 对于 Fe(OH)。→ Fe+2OH⁻,由于该反应无电子转移,因而与电势无关。

根据
$$K_{sp}$$
=[Fe²⁺][OH⁻]²,[OH⁻]=(K_{sp} /[Fe²⁺])^{1/2}= K_{w} /[H⁺]
[H⁺]= K_{w} /[OH⁻]= K_{w} ×([Fe²⁺/ K_{sp}])^{1/2}

pH =
$$-\lg K_w - 1/2 \lg [Fe^{2+}] + 1/2 \lg K_{sp}$$

= $14 - 1/2 (\lg 0.01 - \lg 8.0 \times 10^{-16})$

=7.45

同理, ⑥ $Fe(OH)_3 \rightarrow Fe+3OH$

pH =
$$-\lg K_w - 1/3 (\lg[\text{Fe}^{3+}] - \lg K_{sp})$$

= $14 - 1/2 (\lg 0.01 - \lg 4.0 \times 10^{-38})$

=2.20

$$\bigcirc$$
 Fe(OH)₃+2H⁺+e → Fe²⁺+3H₂O
 φ [Fe(OH)₃/Fe²⁺]=1.18−0.18 pH

对以上七个线性方程,取 pH 的若干值,分别代入方程进行计算,便得到对应电对的电势值。然后以电势为纵坐标,以 pH 为横坐标便可得到图 3 所示的 Fe—H₂O 体系的 φ —pH 图。其中①、②是没有 H⁺参加的电化学平衡体系,在不生成 Fe(OH)₂、Fe(OH)₃的范围内与溶液的 pH 值无关,是两条水平线。⑤、⑥是没有电子参与的化学平衡体系,只同溶液的 pH 值有关,是两条垂直线。③、④、⑦是既有 H⁺参与反应,又有电子得失的电化学平衡体系,表现为有一定斜率的直线。

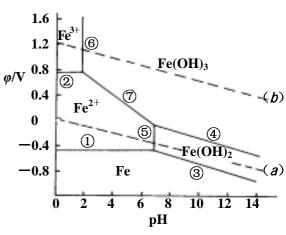


图 3 Fe $-H_2O$ 体系的 φ -pH 图

图中,线(a)代表氢线
$$2H_2O+2e \rightarrow H_2+2OH^-$$
, $\varphi(H_2O/H_2)=-0.0591pH$ 线(b)代表氧线 $O_2(g)+4H^++4e \rightarrow 2H_2O$, $\varphi(O_2/H_2O)=1.23-0.0591pH$

3 φ-pH图的应用

3.1 审视 φ —pH图的三条原则

1. 根据具有高电极电势电对的氧化型的氧化能力大,具有低电极电势电对的还原型的还原能力大,二者易起氧化还原反应的原理可以得出结论:位于高位置曲线的氧化型易与低位置曲线的还原型反应,两条直线之间的距离越大,即两电对的电极电势差越大,氧化还原反应的自发倾向就越大。若高位曲线与低位曲线有交点,在交点处两电对的氧化能力和还原能力相等(设交点pH值为pH²),则随着pH值的改变,氧化还原反应的方向将发生逆转。

$$Ox_1+Re_2 \longrightarrow Re_1+Ox_2$$

 $pH < pH'$ $Ox_1+Re_2 \rightarrow Re_1+Ox_2$
 $pH > pH'$ $Ox_2+Re_1 \rightarrow Re_2+Ox_1$

因此,根据 φ – pH 图可以判断在不同 pH 条件下氧化还原进行的方向。

2. 对于电极反应

$$Ox+H^++e \rightarrow Re+H_2O$$

显然,根据奈斯特方程

$$\varphi = \varphi^{\Theta} + 0.0591 \times \lg[Ox][H^{+}]/[Re]$$

若在一定的pH值时, φ 值大,意味着Ox的浓度大;相反, φ 值小,意味着Re的浓度大。若 φ 一定,pH值大,意味着Ox的浓度大;相反,pH值小,Re的浓度大。

所以,当电势和pH值较高时,只允许氧化型存在;相反,当电势和pH值较低时,则只允许还原型存在。由此可以得出结论:对于一条 φ —pH线,则线的上方为该直线所代表的电对的氧化型的稳定区,线的下方电对的还原型的稳定区,对于一个 φ —pH图,则图的右上方为高氧化态的稳定区,图的左下方为低氧化态的稳定区。

由图2水的 φ -pH图和图3铁的 φ -pH图可以看到这一点。

3. 横的、竖的和斜的 φ —pH线所围成的平面恰是某些物种稳定存在的区域。各曲线的交点所处的电势和pH值,是各电极的氧化型和还原型共存的条件。

3.2 E-pH图的应用

3.2.1 判断氧化还原反应进行的方向

例如,对于反应 $H_3AsO_4 + 2I^- + 2H^+ \Longrightarrow H_3AsO_3 + I_2 + H_2O$,根据 I_2/I^- 和 H_3AsO_4/H_3AsO_3 两

个电对所组成的 φ —pH 图,可见,在 pH=0 时,上线 H_3AsO_4 的氧化能力强于 I_2 , H_3AsO_3 的还原能力弱于 I^- ,所以反应正向进行, E^- = 0.02V。当 pH=0.34 时两线相交,两种氧化态的氧化能力相等,两种还原态的还原能力相等,两电对处于平衡状态。当 pH>0.34 时, I_2 的氧化能力强于 H_3AsO_4 , I^- 的还原能力弱于 H_3AsO_3 ,上述反应逆向进行。

3.2.2 推测氧化剂或还原剂在水溶液中的稳定性

例如,如果某一电对的 φ 一pH线处于氧区,其氧化态在水溶液中表现为不稳定,会氧化水而放出氧气。

已知 φ^{Θ} (F₂/F⁻)=2.87V,且其电势数值不随pH而变,永远处于氧区,因此反应F₂+2H₂O=4HF+O₂ ↑ 会自发发生,F₂在水溶液中可以强烈地分解水。 φ^{Θ} (Cl₂/Cl⁻)=1.36V,Cl₂在常温下与水反应(酸性时)反应速率很慢,只有在光照下才缓缓地释放氧气。再如,KMnO₄溶液, φ^{Θ} (MnO₄⁻/MnO²⁺)=1.51V, φ^{Θ} (MnO₄⁻/MnO₂)=1.68V,电势数值位于氧区,因此预期它在水溶液中会分解水,本身不稳定。因此在实验室中,KMnO₄溶液可以作氧化还原滴定的试剂,但每次使用前必须标定,并不能长期保留,而且通常需保存于避光的棕色瓶内。

如果某电对的 φ — pH线位于水区时,该物质无论是氧化态或还原态,都能在水溶液中稳定存在。如 φ^{Θ} (Cu $^{2+}$ /Cu)=0.34V,Cu $^{2+}$ 及Cu在水溶液中都能稳定存在。

如果某某一电对的E—pH线处于氢线的下方时,可以预测该电对的还原态在水溶液中是不稳定的。例如 $\varphi^{-\Theta}$ (Na $^+$ /Na)=-2.71V,事实上,钠在酸性、中性、碱性溶液中都会从水中析出氢。对于Fe和Sn,虽然 $\varphi^{-\Theta}$ (Fe $^{2+}$ /Fe)=-0.44V, $\varphi^{-\Theta}$ (Sn $^{2+}$ /Sn)=-0.14V,都位于氢的理论线以下,但又处于实际线(虚线)以上,因此Sn和Fe在水中都难置换出 H_2 ,只有在热水、蒸气下才有可能。

3.2.3 利用E-pH图指导科学研究及生产实践

以某工厂生产铟及镉为例,由于在原料液中含有少且 AsO_2^- ,对生产不利,需要除去。设生产原料液 $[H^+]=2mol\cdot L^{-1}$ 。为了除去As(III),可以根据 $Ash\phi-pH$ 图对还原剂Zn、In、Cd、Fe进行筛选。图4是砷的 $\phi-pH$ 图,由图可见, $Zn位于AsH_3$ 区,因此当用 $Zn粉还原HasO_2$ 溶液时,会产生剧毒的 AsH_3 ,只有用In,Cd, $Fe还原HAsO_2$ 才能使 $HAsO_2$ 还原成As。但是,由于使用Fe时会带入杂质离子 Fe^{2^+} 到体系中,显然是不合适的。因此,我们可以选用In,Cd作为还原剂从原料液中除去 $HAsO_2$ 。

图 4 As 的 φ-pH 图

3.2.4 系统学习元素及其化合物的知识

以金属元素Fe为例,根据图3所示 $Fe-H_2O$ 体系的 $\varphi-pH$ 图,可见:只有Fe处于(a)线之下,即Fe处于水的不稳定区(氢区),因而能自

发地将水中的H₂O还原为H₂,而其他各物种都处于水的稳定区,因而能在水中稳定存在。

若向 Fe^{2+} 的溶液中加入 OH^- ,当 $pH \ge 7.45$ 时则生成 $Fe(OH)_2$;而在 Fe^{3+} 溶中加入 OH^- ,当 $pH \ge 2.2$,就生成 $Fe(OH)_3$ 。

由于 $\varphi(Fe^{3+}/Fe^{2+})$ 低于(b)线进入 H_2O 的稳定区,因而 Fe^{2+} 可把空气中的 O_2 还原为 H_2O ,而自己被氧化为 Fe^{3+} ,或换个说法是空气中的 O_2 可以把 Fe^{2+} 氧化为 Fe^{3+} 。

 $Fe(OH)_2$ 的氧化线在(b)线下面很多,所以空气中的 O_2 能完全氧化 $Fe(OH)_2$ 。实际上,当向 Fe^{2+} 中加入 OH^- ,就先生成白色的 $Fe(OH)_2$ 沉淀,随后迅速变为暗绿色的 $Fe(OH)_2$ ·2 $Fe(OH)_3$,最后转变成为红棕色的 $Fe(OH)_3$ 。

在酸性溶液中, Fe^{3+} 是较强的氧化剂,随着pH的增加, Fe^{3+} 的氧化性下降,而在碱性溶液中 Fe^{2+} 的还原性占优势。

4 电势一pH图的局限性

电势一pH图是根据热力学数据建立的,为理论电势一pH图。但是,实际的电化学体系往往是复杂的,与根据热力学数据建立的理论电势一pH图有较大的差别。所以,在应用理论电势一pH图解决问题时,必须注意到它的局限性。

- 1. 理论电势一pH图是一种热力学的电化学平衡图,因而只能给出电化学反应的方向和热力学可能性,而不能给出电化学反应的速率。
- 2. 建立理论电势一pH图时,是以金属与溶液中的离子和固相反应产物之间的平衡为先决条件,但 实际体系中可能偏离这种平衡。
- 3. 理论电势一pH图中所表示的pH值是指平衡时整个溶液的pH值。而在实际的电化学体系中金属表面上各点的pH值可能是不同的。

主要参考书目:

- 1. 唐宗薰, 张逢星, 王建民, 房喻. 中级无机化学. 成都科技大学出版社, 成都, 1993
- 2. 武汉大学, 吉林大学等校编. 无机化学(第三版). 高等教育出版社, 北京, 1994
- 3. (美)D. F. Shriver 著, 高忆慈等译. 无机化学(第二版). 高等教育出版社., 北京, 1997