

第一章 绪论

- 1.1 食品化学的定义、目的和内容
- 1.2 食品化学的发展方向
- 1.3 食品中主要化学变化概述
- 1.4 食品化学在食品工业技术发展中的作用

定义

食品化学是从化学角度和分子水平研究食品的组成、结构、理化性质、生理和生化性质、营养与功能性质以及食品在加工、储藏、运销中的化学变化的科学。

目的

- 为提高食品原料加工和综合利用水平奠定理论基础。
 - 改善食品品质
 - 开发食品新资源
 - 革新食品加工工艺和储运技术
 - 科学调整膳食结构
 - 改进食品包装
 - 加强食品质量控制
- 为食品科学发展提供理论和思维工具,促进食品科学全面深入发展。

内容

- 食品营养化学
- 食品色素化学
- 食品风味化学
- 食品工艺化学
- 食品物理化学
- 食品有害成分化学

- 碳水化合物化学
- 油脂化学
- 蛋白质化学
- 食品酶学
- 食品添加剂化学
- 维生素和矿物质化学
- 保健食品化学

1.2 食品化学的发展方向

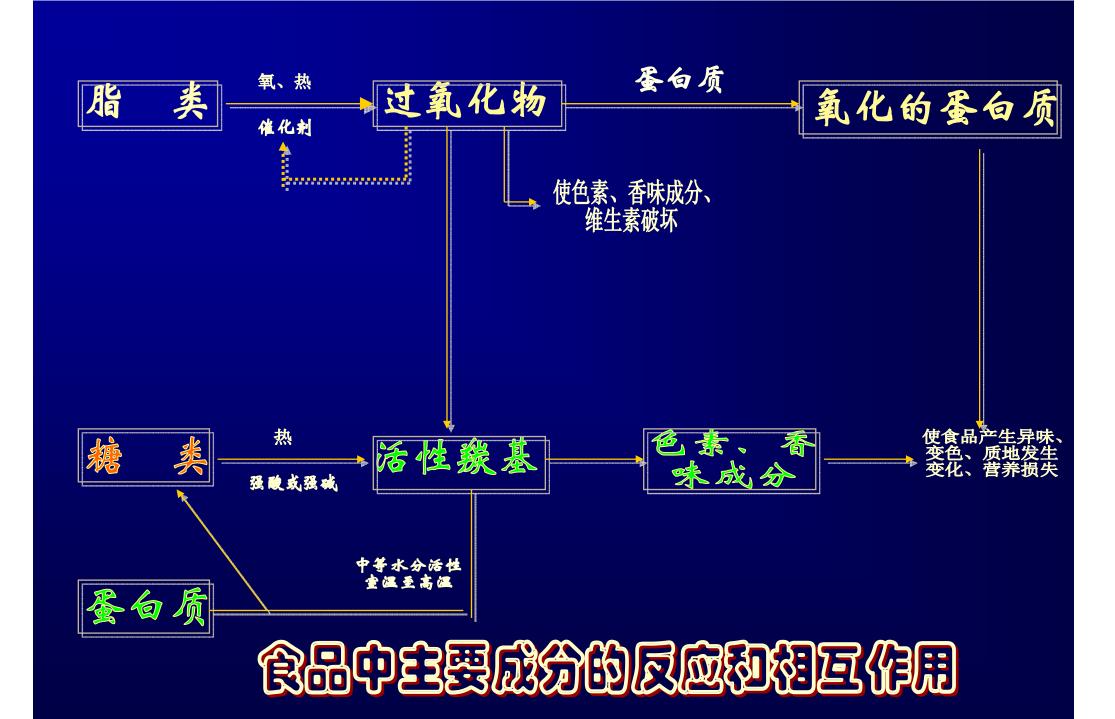
- 反应机理研究
- 风味物质的结构和性质的研究
- 特殊营养成分及结构、功能性质的研究
- 食品材料改性研究
- 食品现代快速分析方法研究
- 高、新分离技术的研究
- 现代储藏、保鲜技术和生理、生化研究
- 新食源、新工艺、新食品添加剂研究

1.3 食品中主要化学变化概述

食品中物质的变化可能对食品属性产生的影响

变化	导致属性改变的类型
失去溶解性、持水力 生成呈味物质 有色物质发生变化 营养物质发生变化 功能性物质发生变化 力能性物质发生变化 产生或钝化毒物	质地变硬或变软 产生酸味、焦味、异味或芳香味、美味 颜色产生或消失 营养价值降低或生物利用性改变 功能改变 安全性改变

改变食品品质的一些反应及产生的效果


反应类型	产生的效果	
非酶褐变 酶促褐变 氧化 水解 金属反应 脂类异构化 脂类环化	焙烤食品表皮成色 切开的水果迅速变色 脂肪产生异味、维生素降解、色素褪色、蛋白营养丧失 脂类、蛋白质、维生素、碳水化合物、色素等降解 促使氧化反应发生,改变食品颜色 脂类分子结构及生物学功能发生变化 脂肪酸结构改变	
脂类聚合 蛋白质变性 蛋白质交联 糖酶解	深锅油炸中油起泡沫 卵清凝固、酶失活 在碱性条件下加工蛋白质使营养降低 宰后动物组织和采后植物组织的无氧呼吸	

食品可能发生的二次变化及其产生的影响

初期变化	二次变化	所产生的影响
脂类水解	游离脂肪酸与蛋白质反应	质地、风味、营养价值改变
多糖水解	糖与蛋白质反应	质地、风味、颜色、营养改变
脂类氧化	氧化产物与其他成分反应	除上变化外还可能产生毒物
水果破碎	酶解、氧化反应	质地、风味、颜色、营养改变
绿色蔬菜加热	物质流失	质地、风味、颜色、营养改变
肌肉组织加热	蛋白质变性凝聚、酶失活	质地、风味、颜色、营养改变
脂类异构化	异构化产物进一步聚合	油炸过度时起泡沫,油脂的营养价值降低

决定食品在储藏加工中稳定性的重要因素

产品自身的因素	各组成成分的化学性质、氧气含量、pH、水分活度、玻璃化温度、玻璃化温度时的水含量
环境因素	温度、处理时间、大气成分、经受的化学物理和生物处理、见光、污染、极端的物理环境

1.4 食品化学在食品工业技术发展中的作用

表 1-5	食品化学指导下现代食品工业的发展
4K 1"J	

方 面	过 去	发 展
食品配方	依靠经验确定	依据原料组成、性质分析和理性设计
工 艺	依据传统,经验和粗放小试	依据原料及同类产品组成、特性的分
		析,根据优化理论设计
开发食品	依据传统和感觉盲目的开发	依据科学研究资料,目的明确地开发,
		并大大增加了功能性食品的开发
控制加工和储藏变化	依据经验,尝试性简单控制	依据变化机理,科学性控制
开发食品资源	盲目甚至破坏性的开发	科学地、综合地开发现有和新资源
深加工	规模小、浪费大、效益低	规模增大、范围加宽、浪费少、效益高

食品化学对各食品行业技术进步的影响

