Part 1: Equilibrium

7. Simple mixtures
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©J] 7. Simple mixtures

The chapter begins by developing the concept of
chemical potential to show that it is a particular
of a class of partial molar quantities. Then it
explores how the chemical potential of a substance
is used to describe the physical properties of
mixture. The underlying principle is that at
equilibrium the chemical potential of a species is
the same in every phase.
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)] 7.1 Partial molar quantities

1) Partial molar volume

When the composition of the mixture is changed
by the addition of dn, of A and drny of B, the total
volume of the mixture changes by

dV=(an dnA+(5‘Vj an.
on, T on, T

dv =V,dn, +V,dn,

V, and V; are the partial molar volumes, they vary
with composition.




@3] 7.1 Partial molar quantities

Once the partial molar volumes of the two components
of a mixture at the composition (and 7) of interest are
known, we can state the total volume, V, of the mixture

by using

V=nV,+nV;




)] 7.1 Partial molar quantities

* The determination of partial molar volume

With particular values of the parameters A, B, and C,
then the partial molar volume of A at any composition
could be obtained from




3] 7.1 Partial molar quantities

@ The determination of partial molar volume

The partial molar volume of the second component is
obtained from

V=nV,+nV,

V-nV, A-@n:+1)C

hg hg

VB




)] 7.1 Partial molar quantities

@ The determination of partial molar volume

The molar volume: the volume that 1 mol substance
occupies, which is always positive.

The partial molar volume: the contribution of 1 mol of
a component to the volume of the mixture at a specific
T and p, which may be positive or negative.



)] 7.1 Partial molar quantities

@ Partial molar quantities

The concept of a partial molar quantity can be extended
to any extensive state function. Let X denote any extensive
properties of a system that contains K components

X:X(Tapanlanz nK)

The change in X When d7, dp, dn,

K
dX:(aij ar +| 2 dp+) o dn,
oT Ph; 5p T.,n, i=1 on, »




J] 7.1 Partial molar quantities

@ Partial molar quantities

def
Definition Xx. _ ox
an. T,p,n

1l

X and n, are extensive properties, and they are
independent of the total quantities in systems;

however, the partial molar quantities, X, is
intensive property.

K
X=nX +mX, -+m X, =) nX,
i=1



=] 7.1 Partial molar quantities

2) Partial molar Gibbs energies

For a pure substance

0G
:G — E—
p.T

For a substance in a mixture

B oG
Hy 8nJ o




7.1 Partial molar quantities

2) Partial molar Gibbs energies

Gibbs energy, G

a b
0 Composition, n,

The chemical potential of a substance is
the slope of the total Gibbs energy of a
mixture with respect to the amount of
substance of interest. In general, the
chemical potential varies with

composition.

0G

My =
on, p.T,n'

The total Gibbs energy of binary
mixture is

G=n,pu, +nyug



)] 7.1 Partial molar quantities

2) Partial molar Gibbs energies

In an open system of constant composition, the Gibbs
energy depends on the n, p, and 7. Thus, G may change
when p, 7T, and the n,. And dG=Vdp—-SdT becomes:

dG =Vdp - SAdT + u,dn, + u,dn, + ---

At constant p and 7

dG = u,dn, + pu,dng +---




=] 7.1 Partial molar quantities

2) Partial molar Gibbs energies

dw =dG = u,dn, + pudn, +---

e, max

Non-expansion work can arise from the changing
composition of a system.




)] 7.1 Partial molar quantities

3) The wider significance of the chemical potential

Since G=U tpV-T8§,

dU =—pdV —Vdp + 8SdT +TdS +dG
=—pdV —Vdp + 8SdT +TdS + (Vdp — SAT + u, dn, + pu,dng +---)

The generalization equation (that dU = 7dS —pdV) to
systems in which the composition may change:

dU =—-pdV +7TdS + u,dn, + pgdng +---




=] 7.1 Partial molar quantities

3) The wider significance of the chemical potential

dU =—-pdV +TdS + u,dn, + p,dn; +---

It follows that, at constant volume and entropy:

dU = pu,dn, + pu,dng + - - -

_(ou
luJ anJ S, V.,n'




2] 7.1 Partial molar quantities

3) The wider significance of the chemical potential

The relations of 1, with G, U, H, A are as followings:

., [agj § _[an
j— J —
’ 6nJ P 6nJ S,V.,n'

§ :(5Hj (o4
' 6’1‘] S,p,n’ o anJ T,V ,n'

When the composition changes, not only does g, show
how G changes, it also shows how U, H, and A change
too (but under a different set of conditions).




€] 7.1 Partial molar quantities

4) The Gibbs-Duhem equation

The total Gibbs energy of a mixture depends on y;
and n, for a binary mixture:

G=n,pu,+ngug

dG =y, dn, + ugdn, +n du, + ndu,
At constant p and T

dG = u,dn, + pydn, +--- It implies that

n,du, +n,du, =0

This equation is a case of the Gibbs-Duhem equation.



2] 7.1 Partial molar quantities

4) The Gibbs-Duhem equation

Z n,du, =0

J
The significance of the Gibbs-Duhem equation is that
the chemical potential of one component of a mixture

cannot change independently of the chemical potentials
of the other components.

In general Z n,dX, =0
J



2)] 7.1 Partial molar quantities

4) The Gibbs-Duhem equation

In a binary mixture, if one partial molar quantity
increases, the other must decrease:

n
du, = - —Ad,”A
n,

This is true for all partial molar quantities.




7.1 Partial molar quantities

4) The Gibbs-Duhem equation

88 -

-
=

-t
iR

154

Partial molar volume of water, ViH,ONem” maol™'

—r
.

Partial motar volume of sthanol, V(C,H;OHYem” mal

o

02 04 06 08 1
Mole fraction of ethanol, w{CH.OH)

The partial molar volumes of
water and ethanol at 25°C.

Where V.., increases, V ;...
decreases. Moreover, a small
change in V', corresponds to a
large change in Vi it n,/ ng is
large, but the opposite is true
when this ratio is small.



)] Example

Using the Gibbs-Duhem equation

The experimental value of the partial molar volume
of K,S0,(aq) at 298 K is given by the expression

V 50, /(em3mol!) = 32.280 + 18.216b”

where b is the numerical value of the molality of
K,S0,. Use the Gibbs-Duhem equation to derive an
equation for the molar volume of water in the

solution. The molar volume of pure water at 298 K
is 18.079 cm?mol!



©J] Example

Method: Let A denote K,S0, and B denote H,O, the
solvent. The Gibbs-Duhem equation for the partial
molar volumes of two components is

ZanXJ:() n,dX, +n,dX, =0
J

this relation implies that

Change the variable V', to the molality b, and integrate the
right-hand side between b = 0 (pure B) and the molality of
interest.




©J)] Example

Answer: It follows from the information in the question, that,
with A = K,S0,, and V', =32.280 + 18.2165'"2

dv,
db

=9.108 p~''*

Vo=V, = [V, mly V=V, -9.108[ "2 b""db

b = .
n,M, >  where bis the molar mass of water




18.079

Ve =V, —9.108 M, [ b"db

. 153.078

s —

£ ke

£ YV _2(9.108 M . b3'?)
E-r E B 3 B

& g.

< z

= =

sore My =Vg —3(9.108 M . b*'?)
By substituting the data

32 i 18 075
0 0.0 0.1

bi{mol kg™) V., /(cm*mol ") = 18.079 — 0.1094 »>'
The partial molar volumes of
the components of an aqueous
solution of potassium sulfate.
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2] 7.2 The thermodynamics of mixing

The dependence of the Gibbs energy of a mixture on
its composition is given and we know that at constant
T and p systems tend towards a lower Gibbs energy.
This is the link we need in order to apply
thermodynamics to the discussion of spontaneous
changes of composition, as in the mixing of two
substances.



€] 7.2 The thermodynamics of mixing

1) The Gibbs energy of mixing

Let the amounts of two perfect gases in the two
containers be n, and ng; both are at a temperature
T and a pressure p. At this stage, the Gibbs energy
of the total system is

G, =n,pu,+ngpu,

=n, 45 +RTIn 1’] S +RTln[p]>

\




©2)] 7.2 The thermodynamics of mixing

1) The Gibbs energy of mixing

To replace p/p° by p, before mixing, the total Gibbs
energy is

Gi:nA{y§+RT1np}+nB{y§+RTlnp}

After mixing, the partial pressures of the gases are
pa and pg, with p,+ pg = p. The total Gibbs energy
changes to

Gf=nA{y§+RT1npA}+nB{y§+RT1an}




)] 7.2 The thermodynamics of mixing

1) The Gibbs energy of mixing

The Gibbs energy of mixing, A . G, is

AmixG — Gf - Gi

mix

=nA{y§+RT1npA}+nB{y§+RT1an}

—(nA {yi + RT In p}-l—nB {;1§+RT In p})

A G=n RTln[ij+n RTln[ij
p p




)] 7.2 The thermodynamics of mixing

1) The Gibbs energy of mixing

A GInRT

At this point we may replace n; by x; and use Dalton's law to
write p;/p = x;for each component, which gives

0

—0.4}

0.6

—0.8

0

0.5
Mole fraction of A, x,

A . G=nRT(x,Inx, +x;Inx;)

Because x; >>1, Inx; <0, and A _. G
<0. The negative A_. G confirms
perfect gases mix spontaneously in
all proportions. And A_. G is
directly proportional to the 7 but is

independent of the total pressure.



Example

Calculating a Gibbs energy of mixing

A container is divided into two equal compartments.
One contains 3.0 mol H, at 25 'C; the other contains
1.0 mol N; at 25 °C. Calculate the Gibbs energy of

mixing when the partition is removed. Assume perfect

behavior.



e Eaa.
far7 )
{55 1@ £
E= E =
”\-ife.-g Example
N

Method: We proceed by calculating the initial Gibbs
energy from the chemical potentials. To do so, we need
the pressure of each gas. Write the pressure of nitrogen
as p; then the pressure of hydrogen as a multiple of p

3.0 mol H, 1.0 mol N,

3.0 mol H, 1.0 mol N,

p(H,) =3pl2  p(N,) = p/l2
2p

can be found from the gas
laws. Next, calculate the
Gibbs energy for the
system when the partition
is removed. The volume of
each gas doubles, so its
partial pressure falls by a
factor of 2.



Example

Answer: Given that the pressure of N, is p, the pressure
of H, is 3p; therefore, the initial Gibbs energy is

G, =nA{u§+RT1np}+nB{”§+RT1np}

= (3.00m01){y§(H2)+ RT In 3p}+ (1.00mol){y§(N2) +RT In p

The partial pressure of N, falls to 5 p and that of H, falls
to p Therefore, the Gibbs energy changes to

= (3.00m01){/4i(H2)+RTln; p}+ (l.OOmol){y: ((N,)+RTIn, p}



©J] Example

The Gibbs energy of mixing is the difference of these
two quantities:

A . G =(3.00mol)RT In 2¥ 7, +(1.00mol)RT In 22 2 P

3p P
=—(4.00mol)R7T In2 =—-6.9kJ

In this example, the value of A . G is the sum of two
contributions: the mixing itself, and the changes in
pressure of the two gases to their final pressure, 2p.
When two gases mix at the same pressure, the change
of Gibbs energy is only from mixing, that is —5.6 kJ.



7.2 The thermodynamics of mixing

2) Other thermodynamic mixing functions

» The entropy of mixing for a mixture of perfect gases

Because (0G/dT),, =-S

AmixS - _(8AmiXGj
D>ny,ng

oT

=—nR(x,Inx, +x;Inx;)

Because Inx < 0, it follows that A .S > 0 for
all compositions




2] 7.2 The thermodynamics of mixing

2) Other thermodynamic mixing functions

» The enthalpy of mixing for a mixture of perfect gases

The isothermal, isobaric enthalpy of mixing, A . H, of two
perfect gases may be found from AG=AH - TAS

A mixH= 0

The enthalpy of mixing is zero, as we should expect for a
system in which there are no interactions between the
molecules forming the gaseous mixture. It follows that the
whole of the driving force for mixing comes from the
increase in entropy of the system, because the entropy of
the surroundings is unchanged.
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7.3 The chemical potentials of liquids

A(g) + B(9)

A(l) + B(l)

— “A(gvp)

Equal at
equilibrium

— pall)

To discuss the equilibrium
properties of liquid mixtures
we need to know how the
chemical potential of a liquid
varies with its composition.
To calculate its value, we use
the fact that, at equilibrium,
the chemical potential of a
substance present as a vapour
must be equal to its chemical
potential in the liquid.



) 7.3 The chemical potentials of liquids

1) Raoult's Law

The French chemist Francois Raoult found that the
ratio of the partial vapour pressure of each component
to its vapour pressure as a pure liquid, p,, p*, , is
approximately equal to the mole fraction of A in the
liquid mixture. That is

Pa = xApZ

This expression is called Raoult's law

Quantities relating to pure substances are denoted by a
superscript * in the following discussions.



€3] 7.3 The chemical potentials of liquids

1) Raoult's Law

Total pressure

Pressure

Partial
pressure
of A

Partial
pressure
of B

0 Mole fraction of A, Xy

1

Pa

Pa = XaADa
The total vapour pressure and
the two partial vapour
_ pressures of an ideal binary
mixture are proportional to
the mole fractions of the
components.

For a binary mixture:
X, +x, =1

Pa—Pa = PaXg



J] 7.3 The chemical potentials of liquids

1) Raoult's Law — Definition for Ideal solutions

Pressure, p/Torr

o))
o
I

N
L=
|

D
o
I

Pa = xAPZ

o Mixtures that obey the Raoult's
law throughout the composition
range from pure A to pure B are
Methylbenzene called ideal solutions.

Benzene

0

Mole fraction of 1

methylbenzene, x(CzH;CH5)



500 Some mixtures obey Raoult's
law very well, especially when
400 the components are structurally
é 300 dioude similar.
=
E 200 But some mixtures do not
acetone | 0obey Raoult's law; and strong
100 deviations from ideality are
\ shown by dissimilar liquids,
G ——————1 e.g. carbon disulfide and

carbon disulfide, x(CS.) acetone




2] 7.3 The chemical potentials of liquids

2) Henry's law

Henry found that for real solutions at low concentrations,
although the vapour pressure of the solute is proportional to
its mole fraction, the constant of proportionality is not the
vapour pressure of the pure substance:

Pg = Xg Ky

where x is the mole fraction of the solute and K;; is an empirical
constant, the tangent to the experimental curve of plot of the
vapour pressure of B against its mole fraction at xz = 0.




(23] 7.3 The chemical potentials of liquids

2) Henry's law- ideal dilute solutions

Pp = X Ky

Mixtures for which the solute obeys Henry's law and
the solvent obeys Raoult's law are called ideal-dilute
solutions.




€] 7.3 The chemical potentials of liquids

3) Chemical potential for ideal mixtures

For a pure substance:

(an R p
H=|— =u + RT In| —
on I.p p°

Because the vapour pressure of the pure liquid is p* ,,
it follows that

wy=p+RTI0| E2 1 ey R !

1=

P

Where p* , is the relative pressure, p*, /p°



)] 7.3 The chemical potentials of liquids

1) ideal solutions —The chemical potential

If another substance, a solute, is also present in the
liquid, the chemical potential of 4 in the liquid is  ,
and its vapour pressure is p,, in this case

\

py=H +RTIn p—‘: =u +RTInp,
P

Where p, is the relative pressure, p, /p°




7.3 The chemical potentials of liquids

1) ideal solutions —The chemical potential

#y=p +RTInp,

;- N
py=p +RTInp,

A At equilibrium

—— 1a(@.p)

Equatat  uy=(u,—RTInp,)+RTInp,

—— Hall) .

AQ) + B() ,uA=,uA+RTlnp;f‘
J 4




7.3 The chemical potentials of liquids

1) ideal solutions —The chemical potential
Pa

%

Pa
It shows a relation between the ratio of vapour pressures

and the composition of the liquid.

p, =, +RTIn

According to Raoult’s law p, = x, pj;

pu,=p,+RTInx,

This important equation can be used as the definition of
an ideal solution.



)] Example

Investigating the validity of Raoult's and Henry's laws

The vapour pressures of each component in a mixture
of acetone(A) and chloroform(C) were measured at 35
‘C with the following results:

X 0 0.20 {0.40 [0.60 [0.80 |1
pc/Torr |0 35 82 142 (219 |293
pi/Torr (347 (270 |185 [102 |37 0

Confirm that the mixture conforms to Raoult's law
for the component in large excess and to Henry's law
for the minor component. Find the Henry's law

constants.



©J] Example

Method: Both Raoult's and Henry's laws are statements
about the form of the graph of partial vapour pressure
against mole fraction. Therefore, plot the partial vapour
pressures against mole fraction.

Raoult's law is tested by comparing the data with the
straight line p,=x, p*; for each component in the region
in which it is in excess (and acting as the solvent).

Henry's law is tested by finding a straight line p,=x; K,
that is tangent to each partial vapour pressure at low x,
where the component can be treated as the solute.



Pressure Mo

il 1]

100

Example

P acetone)

prichloroform) .-
— Raoult's law —-/

- Kiacetone)

I,.a';Henry‘s law — %

0 0.2 0.4 0.6 0.8 1.0

Mole fraction of chioroform, x(CHC )

The experimental partial
vapour pressures of a
mixture of chloroform
and acetone.

Answer: The data are plotted in
the Figure together with the
Raoult's law lines..

Henry's law requires
K =175 Torr for acetone and
K =165 Torr for chloroform



Example

Using Henry's law

Estimate the molar solubility (the solubility in moles
per liter) of oxygen in water at 25 C and a partial
pressure of 160 Torr, its partial pressure in the
atmosphere at sea level.



Example

Method: The mole fraction of solute is given by Henry's

law as x =p/K, where p is the partial pressure of the gaseous
solute. All we need do is to calculate the mole fraction that
corresponds to the stated partial pressure, and then interpret
that mole fraction as a molar concentration. For the latter
part of the calculation, we calculate the amount of O,
dissolved in 1.00 kg of water (which corresponds to about
1.00 L water). The solution is dilute, so the expressions for the
mole fraction can be simplified.



Example

Answer: Because the amount of O, dissolved is small, its
mole fraction is

x(0,) = n(0,) - n(0,)
n(0,)+n(H,0) n(H,0)
since pp, = x, K, l

p(O,)n(H,0)
K

n(0,) = x(0,)n(H,0) =

_(160Torr)x(55.5mol)
3.33x10" Torr

The molality of the saturated solution is therefore 2.69x10-
molkg!, corresponding to a molar concentration of approxi-
mately 2.7 x 10~ mol L-!

=2.69x10 *mol
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2)] The properties of solutions

In this section we consider the thermodynamics of
mixing of liquids. First, we consider the simple case
of mixtures of liquids that mix to form an ideal
solution. In this way, we identify the thermodynamic
consequences of molecules of one species mingling
randomly with molecules of the second species. The
calculation provides a background for discussing the
deviations from ideal behavior exhibited by real
solutions



7.4 Liquid mixtures

The Gibbs energy of mixing of two liquids to form
an ideal solution is calculated in exactly the same
way as for two gases. The total Gibbs energy before

liquids are mixed is
G, =np, +nypg
when they are mixed, the individual chemical
potential is
H, ::“; +RTInx,
and the total Gibbs energy is

G, :nA{yZ +RTlnxA}+nB{,u; +RTlan}



7.4 Liquid mixtures

The Gibbs energy of mixing, A . G, is

AmixG = Gf . Gi

mix

A_. G =nRT {xA In x, + x; In xB}

Because (0G/dT),, =-S

It follows that the ideal entropy and enthalpy of mixing
of two liquids is

A S=—nR(x,Inx, +x;Inx;)

AmixI{ — 0




7.4 Liquid mixtures

The variation of the Gibbs energy of
mixing with composition is the same as
that already depicted for gases (above);
the same is true of the entropy of mixing
oo (below). and all the conclusions drawn
there are valid here: the driving force
for mixing is the increasing entropy of
the system as the molecules mingle, and
the enthalpy of mixing is zero.

L
o 0.5 1
Mole fraction of A, x,

i
(o] a5 1
Mole fraction of A, x,




©J] 7.4 Liquid mixtures

It should be noted that solution ideality means
something different from gas perfection. In a
perfect gas there are no interactions between
molecules. In ideal solutions there are
interactions, but the average A-B interactions
in the mixture are the same as the average A-A
and B-B interactions in the pure liquids.



)] 7.4 Liquid mixtures

[] The regular solution

Real solutions are composed of particles for which
A-A, A-B, and B-B interactions are all different. Not
only may there be an enthalpy change when liquids
mix,but there may also be an additional contribution
to the entropy arising from the way in which the
molecules of one type might cluster together instead
of mingling freely with the others.



7.4 Liquid mixtures

[1 The excess functions

The difference between the observed thermodynamic
function (extensive) of mixing and the function for an
ideal solution is defined as the excess functions, X ¥

X% def) X-X"

XE — AmiX‘X o AmixXid



7.4 Liquid mixtures

[1 The excess functions

The thermodynamic properties of real solutions may be
expressed in terms of the excess functions, X F.
Deviations of the excess functions from zero indicate the
extent to which the solutions are nonideal.

GE — AmixG - AmixGid

SE — AmixS _Amixsid




7.4 Liquid mixtures

[1 The regular solution

H 20 Sf=0

A regular solution can be thought of as one in which
the two kinds of molecules are distributed randomly
(as in an ideal solution) but have different energies of
interactions with each other.
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7.5 Colligative properties

1) The common features of colligative properties

In dilute solutions, some properties depend only on the
number of solute particles present, not their identity.
They are called colligative properties.

Some of these properties are as followings:

The elevation of boiling point
The depression of freezing point
Solubility and osmotic properties




7.5 Colligative properties

2) The elevation of boiling point

Considering boiling is between
the solvent vapour and the
solvent in solution at 1 atm. We
denote the solvent by A and the
solute by B. The equilibrium is
established at a temperature for
which

#.(@=p,()+RTInx,



©J)] 7.5 Colligative properties

2) The elevation of boiling point

The presence of a solute at a mole fraction x; causes
an increase in normal boiling point from 7% to T*+AT

%2
RT
AT — KxB K = ﬁ
vap

Because the equation make no reference to the identity
of the solute, only to its mole fraction, we conclude that
the elevation of boiling point is a colligative property.

The value of AT does depend on the properties of the
solvent.



7.5 Colligative properties

2) The elevation of boiling point

For practical applications, we note that the mole fraction

of B is proportional to its molality, b, in dilute solutions,
then

AT =K,b

K, is the empirical constant of the solvent



3) The depression of freezing point

The only difference between this calculation and the above is
the appearance of the solid's chemical potential in place of
the vapour's. we can write the result directly

AT = K'x,

4 2
k=X

A H

where A T'is the freezing point
depression, A . _H is the enthalpy

fus
of fusion of the solvent.




7.5 Colligative properties

4) Solubility

« N

B(dissolved in A)
—— ng(solution)
Equal at

equilibrium

Be) — | M&®

~ S/

The heterogeneous equilibrium
involved in the calculation of
the solubility is between pure
solid B and B in the solution.

When a solid solute is left in contact
with a solvent, it dissolves until the
solution is saturated. Saturation is
a state of equilibrium, with the
undissolved solute in equilibrium
Lg*(s), and the chemical potential
of B in solution, /(1), are equal

p(8) = py (1) = pr; () + RTIn x,



7.5 Colligative properties

4) Solubility

To find the mole fraction of B in solution at equilibrium
when the temperature is 7

()~ () _ 4,6
RT RT
H A_S
_I_

RT R
At the melting point of the solute, 7°, we know that

A, G =0, consequently,

Inx, = 2wt 1 _1
R \T T

Inx, =

A

fus




The phenomenon of osmosis
is the spontaneous passage of
a pure solvent into a solution
separated from it by a
semipermeable membrane, a
membrane permeable to the
solvent but not to the solute.
The osmotic pressure, /7, is
 Equal at —— the pressure that must be

equillrium applied to the solution to stop
The osmotic pressure, /7, the influx of solvent.




7.5 Colligative properties

5) Osmosis

For dilute solutions

=[BIRT e 1
|B] Bl=7,

[B] is the molar concentration of the solute.

The above equation is called vant’t Hoff equation.
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)] Activities

Now we see how to adjust the expressions developed
earlier in the chapter to take into account deviations
from ideal behaviour. In Section 5.4 we saw how the
fugacity was introduced to take into account the
effects of gas imperfections in a manner that
resulted in the least upset of the form of equations.
Here we see how the expressions encountered in the
treatment of ideal solutions can also be preserved
almost intact by introducing the concept of activity.



7.6 The solvent activity

The general form of the chemical potential of a real or
ideal solvent

)
Pa

p,=p,+RTIn

Raoult'slaw 4, =, +RTInx,

When the solution does not obey Raoult's law the
equation can be preserved as

pu,=p,+RTIna,




7.6 The solvent activity

[1 The activity, a,
pu,=u, +RTIna,

The quantity a, is the activity of A, a kind of 'effective’
mole fraction, just as the fugacity is an effective pressure.

Because u, =y, + RTln(p %) is true for both real and
Pa
ideal solutions,
a, = Pa
Pa




7.6 The solvent activity

[] The activity coetficient, y,

Because all solvents obey Raoult's law increasingly
closely as the concentration of solute approaches zero,
the activity of the solvent approaches the mole fraction
asx, > 1

a, >x,as x, —>1

a, =y,x, y,—>1 as x, —>1

a

_ G

YA =
XA

v is called the activity coefficient




7.6 The solvent activity

[] The activity coetficient, y,

a, >x,as x, —>1

a, =y,.x, 7.—1 as x, -1

At all temperatures and pressures, the chemical
potential of the solvent is then

pu,=pH,+RTInx, + RTIny,

The standard state of the solvent, the pure liquid
solvent at 1 bar, is established when x,=1
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7.7 The solute activity

1). Ideal-dilute solutions

A solute B that satisfies Henry's law has a vapour
pressure given by pp=K; x5, where K is an empirical
constant. In this case, the chemical potential of B is

5 * K
ﬂBzﬂB+RTln[pfj=ﬂB+RTln( f]JrRTlan
Px

The new standard chemical potential isl

N K
Mg = pyg + RT In(—

Ps
It follows that g, = py + RTInx,




7.7 The solute activity

2). Real solutes

When permit deviations from ideal-dilute, Henry's law
behaviour. For the solute, introduce ag in place of x;

My = iy + RTIn x,, ‘ My =ty + RTInay

The standard state remains unchanged, and all the
deviations from ideality are captured in the activity a.
The value of the activity at any concentration can be
obtained in the same way as for the solvent, but here

_ Py

a
B
KB



7.7 The solute activity

2). Real solutes

g =78 XB
All the deviations from ideality are captured in the

activity coefficient j; Because the solute obeys Henry's
law as x; — 0, it follows that

a, >xzand y, >1  asx; —>0

At all temperatures and pressures. Deviations of the

solute from ideality disappear as zero concentration
is approached.



7.7 The solute activity

3). Activities in terms of molalities

In dilute solutions the amount of solute is much less
than that of solvent

ng<<n, W) Xz~ ng/n,

Kb
Because n is proportional to the molality by, s0 x, = —2=

bﬂ
where b° =1 mol kgl and « is a dimensionless constant.
For an ideal-dilute solution it follows that
Uy = My + RT In k + RT ln(Z—‘;
B

When replace b/ b ? by b

py=p.+RT Ink+RT Inb,




7.7 The solute activity

py=p.+RT Ink+RT Inb,

Let 4 = u + RTInkbe a new standard chemical potential

then u, =u, + RT Inb,

uy is defined as the chemical potential of the solute
when the molality of B is equal to »° (at 1 mol kg1).

The deviations from ideality by introducing a dimension-
less activity, az a dimensionless activity coefficient ) g

b

aB:be_g where y, >1 as b, >0



Summary on activities

Component | Basis Standard state Chemical potential Limits
Solvent Raoult | Pure solvent e ﬂ* +RTIna
% (=] ) ﬁl
pl= RTINS | g6
a=p/p* and a Pure solvent
= VX
Solute Henry | 1) A hypothetical state | 1 = ,”+ +RTIna
of pure solute K
)
Ps :
a=p/K and a=yx|/ 3" *
2) A hypothetical state
of solute at molality b ? | H5~ ﬂ o RTIna
u =u +RTInk
K b Yy =1

a=yb/b’x,=

as b =0




3] Example

Measuring activity
Use the information in Example 7.3 to calculate the activity
and activity coefficient of chloroform in acetone at 25 C,

treating it first as a solvent and then as a solute.

The vapour pressures of each component in a mixture of
acetone(A) and chloroform(C) were measured at 35 'C with

the following results:

K, =165 Torr
Xc 0 0.20 |0.40 (0.60 [0.80 |1
pc/Torr |0 35 |82 142 219 |293
pA/Torr 347 (270 (185 [102 (37 |0




©J)] Example

Xc

0.20

0.40

0.60

0.80

pc/Torr

35

32

142

219

293

Method: For the activity of chloroform as a solvent

>|aA :PA/pZ 0

‘0.12 ‘0.28 ‘0.49 ‘0.75 ‘1.00

> | 7a :aA/xA

For its activity as a solute (the Henry's law activity):

> | a,=p,/K, ‘0 ‘0.21 ‘0.50 ‘0.86 ‘1.33 ‘1.78

> |78 :aB/xB

»|
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