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Part 1: Equilibrium

5. The Second Law:the machinery
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@=3] 5. The Second Law: the machinery

In this chapter:

First: to find relations between properties that might not be
thought to be related; to derive expressions for

the variation of the G with T and p.

Second: to Introduce the chemical potential, a property that
will be at the center of discussions in the remaining chapters
of this part of the text; to derive expression of fugacity.

The 'chemical potential’, the quantity on which almost all the
most important applications of thermodynamics

to chemistry are based.
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@+3)] 5. The Second Law: the machinery

Combing the First and Second Laws
5.1 Properties of the internal energy [
5.2 Properties of the Gibbs energy
5.3 The chemical potential of a pure substance

Real gases:the fugacity
5.4 The definition of fugacity
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The fundamental equations

Five state functions in the First and Second Laws:

ne internal energy: U
ne entropy: .§

ne enthalpy: H

ne Helmholtz energy: 4
ne Gibbs energy: G

H=U+pV
A=U-TS
G= H-TS = U+pV-TS =A+pV




The fundamental equations

The First Law: dU =dg+dw

For a reversible change in a
closed system of constant
composition, and in the absence
of any non-expansion

work:
dw=-pdV and dg =7TdS

dU=TdS pdV

dU is an exact differential, its value is independent of path.




@3] The fundamental equations

H=U+pV, A=U-TS, G=U+pV-TS

dH =dU+ pdV + Vdp
=(TdS—pg,Vf+ py/ + Vdp
=T7dS +V dp

dG =dU+pdV+ Vdp —TdS- SAT
= (]/‘dé—p(y/fﬁ)d/Vdp —TdS//SdT
= Vdp -SdT

dA=dU-TdS-SdT

= (198 pdV) ~Tds% ST

= pdV-SdT




@3] The fundamental equations

dU=TdS pdV

dH=TdS+Vdp

dG=Vdp-SdT

dA=-pdV-SdT

The fundamental equations




@~y S.1 Properties of the internal energy

1). The Maxwell relations

2= f(x,p) dz=(@—zj dx+(8—z) dy
ox ), oy ).

= gdx + hdy
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@%3] 5.1 Properties of the internal energy

1). The Maxwell relations
The first derivative of g with respect to y, and / to x

og) _ 0%
oy ). 0xQy O

—
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dz = gdx + hdy




@%3] 5.1 Properties of the internal energy

1). The Maxwell relations

} dU:(g—Uj dS+(@—Uj dv
oS ), oV ),

dz = gdx + hdy

dU =TdS - pdV




@%3] 5.1 Properties of the internal energy

1). The Maxwell relations

oT
dU =TdS — pdV (st ——(—

dH=TdS + V dp

> Maxwell
relations




@3] S.1 Properties of the internal energy

dU =TdS - pdV

dH=TdS + Vdp

dA=—p dV -SdT

dG=Vd p -SdT




5.1 Properties of the internal energy

2). The variation of internal energy with volume

The internal pressure is definedas 7@, = (a—Uj
oV ),

oU oU

Since dU :(—j dS+(—j dv
S ), ov ),

If divide both sides of equation by dJ with the constraint of
constant 7

o), = 5s). o), + (&7,




@3] S.1 Properties of the internal energy

2). The variation of internal energy with volume

() -5, e 3
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@y Lxample - Deriving a thermodynamic relation

Show thermodynamically that 7 ,.= 0 for a perfect gas,
and compute its value for a van der Waals gas

Method: Proving a result 'thermodynamically' means basing

it entirely on general thermodynamic relations and
equations of state.

Answer: 1). For a perfect gas, pV'=nRT, and
(6p/0T), =nR /V

0
From the equationof w, =7 (_pj - D
oT ),




Example 5.1 Deriving a thermodynamic relation

2). The equation of state of a van der Waals gas is

op | _
L7 ‘ (5ij

That is
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@3] -2 Properties of the Gibbs energy

1). The outline of the Gibbs energy with 7 and p

For a closed system doing non-expansion work and at constant
composition

dG = ydp — SAT wmy (5_Vj

oT

p

&




5.2 Properties of the Gibbs energy

1). The outline of the Gibbs energy with 7 and p
G=G(p,T) dG = Vdp — SAT (5—Gj __s

O
2
7]
=
]
o

0

£

O

~

Temperature, T

The variation of the Gibbs energy
with the temperature is determined
by the entropy

oT

The entropy of the gaseous phase

of a substance is greater than that
of the liquid phase, and the entropy
of the solid phase is smallest, the
Gibbs energy changes most steeply
for the gas phase, followed by the
liquid phase, and then the solid
phase of the substance.




5.2 Properties of the Gibbs energy

1). The outline of the Gibbs energy with 7 and p
G=G(p,T) dG =Vdp —SdT (G_GJ _y

(sas
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Liquid

— Solid

Pressure, p

The variation of the Gibbs energy
with the pressure determined by the
volume of the sample

op

The volume of the gaseous phase
of a substance is greater than that
of the same amount of liquid phase,
and the volume of the solid phase is
smallest, the Gibbs energy changes
most steeply for the gas phase,
followed by the liquid phase, and then
the solid phase of the
substance.




Example = Calculating the effect of pressure on the Gibbs energy

Calculate the change in the molar Gibbs energy of:
(a) liquid water treated as an incompressible
fluid ,and
(b) water vapour treated as a perfect gas, when
the pressure is increased isothermally from

1.0 bar to 2.0 bar at 298 K.
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;'\ Example = Calculating the effect of pressure on the Gibbs energy

Method: In each case, the change in molar Gibbs
energy can be obtained by integration of the
equation dG= Vd p —-SdT with the temperature held
constant:

G.(p;)-G,(p;)=["V,dp

P;
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' Example- Calculating the effect of pressure on the Gibbs energy

(a) For an incompressible fluid, the molar volume is
independent of the pressure so V' can be treated
as a constant. For the incompressible liquid, V', is
constant at 18.0 cm?mol-l, then

G.(p )-G.(p )=V.[" ap=V, x(p, - p,)

Di

= (18.0>< 10 °m*mol _l)x (1.0>< IOSPa)

—+1.8Pam’ mol ' = +1.8Jmol !
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’) Example = Calculating the effect of pressure on the Gibbs energy

Answer:

(b) For a perfect gas, the molar volume varies with
pressure as V_ = RT/p, so this expression must
be used in the integrand, and the integration

performed treating RT as a constant:

6ulp,)-6.lp,)= " %L ap- Rnn[;]

- (2.48kJmol " )xIn 2.0
= +1.7kJmol
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. Example = Calculating the effect of pressure on the Gibbs energy

(a) For an incompressible

G (pf )— G (pi ): +1.8 Jmol '

(b) For a perfect gas

G.(p )-G,(p )=+1.7 kJmol




5.2 Properties of the Gibbs energy

2). The temperature dependence of the Gibbs energy

(an g G=H-TS B
’ S=(H-G)/T

or




@3] >-2 Properties of the Gibbs energy

2). The temperature dependence of the Gibbs energy
0
oT

the Gibbs-Helmholtz (G—H) equation




@3] 5.2 Properties of the Gibbs energy

2). The temperature dependence of the Gibbs energy

(a(G/T)j {a(G/T)] d(1/7)

oT 0/T) ) dT




@53] O-2 Properties of the Gibbs energy

3). The pressure dependence of the Gibbs energy
At constant temperature: (dG =Vdp - SdT)

G(p)=G(p)+| Vdp

For a liquid or solid, the volume changes only slightly as the
pressure changes, so J may be treated as a constant. For molar

guantities:
G, (p)=G,(p)+V, (P~ p)
— Gm(pi)_l_VmAp

At normal lab. conditions V_, A p is small, so it suggests that
the G of solid and liquid are independent of p.




5.2 Properties of the Gibbs energy

3). The pressure dependence of the Gibbs energy

For a perfect gas, the Gibbs energy may depend strongly on
the pressure; and the volume also varies markedly

with the pressure. Then V' =nRT/p:
P+
G(p)=G(p)+V | dp

= G(p,)+nRT [ dp
Di p

= G(p,)+nRT ln[%‘;j




@3] -2 Properties of the Gibbs energy

3). The pressure dependence of the Gibbs energy

Volume, V

G(Pf ): G(Pi )"‘ nRT ln(&j
D;
[vap

P Ps
Pressure, p

If set p.= p then the Gibbs energy of a perfect gas at a

pressure p is related to its standard value by
)

G(p)=G® +nRTIn| £
P




@2)] Example

Calculate the change in the molar Gibbs energy

of hydrogen when its pressure is increased
isothermally from 1.0 atm to 100.0 atm at 298K.
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@=3)] Example

Answer:

1.00mol hydrogen (id.g)

298K, 1.0atm,V;

G(p,)=G(p. )+ nRT ln[l;:j

AG = RTIn(fL)
p;

NG

=

1.00mol hydrogen (id.g)

298K, 100.0atm,V,

100.00atm

= (8.314 JK 'mol ") x (298 K) x In( )

—11.41 kJmol

1.00atm
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5.3 The chemical potential of a pure substance

1) Partial molar quantities

V,U, H, S, A and G(general X) are extensive properties. X
depends on not only T and p, but also .

For a single phase system of a pure substance, X, Is certain when

T'and p are specific
X=nX_
For a mixture of pure substances at constant 7 and p
XEn Xy 0y X5+




5.3 The chemical potential of a pure substance

Substance 1 | Substance 2 Mixture
n,

I, p

Vi=my Vi
U=nmU,,
Hy=nmnH, ,
$)=n,8,,,
Ay=n,A,,,
Gy=n,G,,

For perfect gases, AV=AU=AH=0; AS #0,nor A 4 or A G.

For real gases, the change in extensive properties in a mixture is
generally A X =0.




5.3 The chemical potential of a pure substance

1) Partial molar quantities

Generally, X=f£(T, p, n,, n,*), and

j dT+£al] dp+£an dn, +---
Dshy,ny - ap T,n ,n,- 6”1 T,p,n,,n;-

i

0X
(G—J the partial molar quantity
T,p,nj

Note that: 1) X, extensive properties
2) at constant 7" and p




5.3 The chemical potential of a pure substance

1) Partial molar quantities

The chemical potential of component
i in the mixture.




5.3 The chemical potential of a pure substance

2) The definition of chemical potential of a pure substance

The chemical potential, z, of a pure substance is defined as

_ (@_Gj
# on I.p

For a pure substance, the Gibbs energy is G =nG

‘u:((%ij G,
on ),

The chemical potential, /4, is the same as the molar Gibbs
energy G, .




5.3 The chemical potential of a pure substance

3) The chemical potential

(aGm] v
op ),

dG. =V _dp




5.3 The chemical potential of a pure substance

du=V_dp

_ RT
p

d,u:RTd—p

For a perfect gas: V

m

P

Let 4 denotes the standard chemical potential, the molar
Gibbs energy of the pure gas at (1 bar)p °

=4 + RTIn




5.3 The chemical potential of a pure substance

/
u=u®+RTn| £

\P

The chemical potential, 1, of a
perfect gas is proportional to 1n
p, and the standard state is
reached at p °. Note that, as p
— 0, 4 becomes negatively

The variation of chemical infinite.
potential of a perfect gas with

P

=
I
=
i)
5]
a
£
0]
<
O

P Pressure, p
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@] Real gases: the fugacity

At various stages in the development of physical
chemistry it is necessary to switch from considera-tion of
idealized systems to real systems. In many cases it is
desirable to preserve the form of the expressions that
have been derived for the idealized system. Then
deviations from the idealized behavior can be expressed
most simply. We shall illustrate such procedure in this
section by considering how the expressions that have
been derived for perfect gases, particularly the equation
for the chemical potential of a perfect gas, are adapted
t 0 d e S C r i b e
real gases.
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5.4 The definition of fugacity

The chemical potential of a perfect gas:

( A

u=pu + RTIn £

P
For a real gas, replace the true pressure, p, by an effective
pressure, f, then the fugacity of a (real g\as IS defined as:

u=pu +RTIn S

1=
\P )
The name 'fugacity' comes from the Latin for 'fleetness’ in the

sense of 'escaping tendency '. Fugacity has the same
dimension as pressure.
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5.4 The definition of fugacity

Attractions Repulsions
dominant dominant

{f‘rm (f>p) |

Hertect
gas

=.
]
=
g
T
2
£
o
N
Q

p“ Pressure, p
The u of a real gas

BT : 464 B T A A

For the chemical potential of a real gas:

* at hlgher D5 lu real > lu perfect
the repulsive forces are dominant and the

“escaping tendency' is increased.

* at lower D lu real < lu perfect
the attractive forces are dominant and the

molecules have a lower "escaping tendency’'.

e as p—0, u coincides with the value for a
perfect gas.




5.5 Standard states of real gases

A perfect gas is in its standard state when its pressure is
1 pgr): the pressure arises solely from the Kinetic energy

of the molecules and there are no intermo-
lecular forces to take into account.

The standard state of a real gas is A hypothetical state in which
the gas is at a pressure and behaving perfectly.

du=V dp wp=u +RTIn




@%3)] 5.6 The relation between fugacity and pressure

The fugacity coeftficient, ¢, is defined as:

/
Q=" or f=¢p
P
The fugacity coefficient,

1). Dimensionless;

2). depends on the identity of the gas, the pressure,
and the temperature.

u=u +RTn




5.6 The relation between fugacity and pressure

In terms of fugacity coetficient:

<

=+ RT ln[pJ+RT In ¢
p

1)
The terms of the M&nd In ?’{}re the same as those in the

above equation. Therefore, the feTfim gnust express
the entire effect of all intermolecular forces.

For all gases , f=p asp — 0, lim L - 1
p—0 p
For a prefect gas: f=p and @=1; for a real gas: f# p and

@# 1. @is a measure of a real gas derived from the perfect
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@53)] 5.6 The relation between fugacity and pressure

The equation dz =V djs true for all gases. Let f denotes the
fugacity when the pressure is p and f’ the fugacity when the

pressure is p’, from the definition of fugacity we have:

p=["V,dp=p°+RT In Le
p P

' '
u'= I;dep = u°+ RT In %
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@~3)] 5.6 The relation between fugacity and pressure

p 'Y
jp,dep = u—u'=RT ln( f’]

If the gas were pertect:

P
_[ vaperfect, mdp = :uperfect o ”'perfect = RT ln(—

The difference of the two equations is:

j; (Vm o Vperfect, m )’jp = RT -
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@~3)] 5.6 The relation between fugacity and pressure

| L« P =L”(V Vs o P
p f' RT pv m perrect, m

When p'—0, the gas behaves perfectly and f 'becomes
equal to the pressure p'. Therefore, p'/f'—1 as p'—>0.
If we take this limit, this equation becomes:

1
In (%) - ﬁ Op (Vm — Vperfect, m )’jp

With o=f/p

BT MR B TR B 2 A =5



@~3)] 5.6 The relation between fugacity and pressure

At a general pressure p, the fugacity coefficient of a gas
is given by:

+ RT In ¢

o

\ P )
where Z is the compression factor of the gas. This
equation is an explicit expression for the fugacity

coefficient at any pressure p. The fugacity of the
gas at that pressure can be obtained by f=0p
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=3\ Real gases: the fugacity

Ing=|"(z - 1)%”
If Z <1 throughout the rage of integration:

The integrand <0, p<1, ﬂ< 2

The molecules tend to stick together and the chemical
potential of the gas is less than that of a perfect gas;

If Z> 1 throughout the rage of integration(higher pressure):

The integrand > 0, > 1, q> P>

The repulsive interactions are dominant and tend to drive
the particles apart, and the chemical potential of the gas is
greater than that of a perfect gas



&= Real gases: the fugacity

The expression for chemical potential:
dy=dG_ =V _dp

The chemical potential of a perfect gas :

u=pu°+ RTln(pj

(=2

P
The chemical potential of a real gas and the fugacity, f:
u=pu°+ RTln[fj = 4+ RTln{pe] + RTIn g
P P

The fugacity coefficient, ¢ (f,p); ¢ (Z,p):
d
p=flpor f=pp  mp=|['(z-1)F




=) Example - Calculating a fugacity

Suppose that the attractive interactions
between gas particles can be neglected,
and find an expression for the fugacity of a
van der Waals gas in terms of the pressure.
Estimate 1ts value for
ammonia at 10.00 atm and 298.15 K.




Example - Calculating a fugacity

"Method: The starting point for the calculation is equation

ln(p:'fop(z_ljdp

4

Answer: the van der Waals equation is as followings:

B RT o a
i Vv —-b V?°
b= RTb wmp pV_ = RT +bp
and Z=p o
RT

hence 7-1+00



Example - Calculating a fugacity

For ammonia at 10.00 atm and 298.15 K

f = (10.00atm )x """ =10.2atm




)] Example

The fugacity coefficient of a certain gas at 290 K
and 2.1MPa is 0.68. Calculate the difference of its
chemical potential from that of a perfect
gas in the same state.

Method:

w = u RTln(p




)] Example

Answer:
u— ' = RTng
= (8.314JK “'mol )x (290K )x In(0.68 )

=—-930 J mol '




= =
&2 Kxample
e
—

Consider a system consisting of 1.5 mol CO, (g),
initially at 15C and 9.0 atm and confined to a
cylinder of cross-section 100.0 cm?. The sample is
allowed to expand adiabatically against an external
pressure of 1.5 atm until the piston has moved
outwards through 15 cm. Assume that carbon
dioxide may be considered a perfect gas with
Cy ,=28.8 J K'! mol!, and calculate (a) ¢, (b) w, (c)
AU, (d) AT, and (e) AS.
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)] Example

Method and answer:

(@).q:  (adiabatic) wmp g = 0

(®).w:  w=-p AV &

3

1.01x10°Pa
atm

Im
10°cm’

W= —(1.Satm)>< X (1()()cm2 )x (15cm)><

=-=227.2J

(o). AU: AU =q+w =-227.2J




)] Example

) - 227.2) .
~ (1.5mol )x (28.8JK ~'mol ')

=-5.28 K




J] Example

T. =T, +AT =288.15K —5.28K = 282.9K

_ (1.5atm ) (8.206 x 10 ? LatmK "'mol ' )x 288.2K
B 9.0 atm

= 3.942L

1L
1000cm °

V,=V,+AV =3.942L +100cm * x (15cm )x(

)= 5.44 L

AS =3.2J K"




)] Part 1: Equilibrium

. The properties of gases
. The First Law: the concepts
. The First Law: the machinery
. The Second Law: the concepts
. The Second Law: the machinery
. Physical transformations of pure substances
. Simple mixtures
. Phase diagrams
Chemical equilibrium
10. Electrochemistry

1
2
3
4
S
6
7
3
9.




