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In this chapter:
First: to find relations between properties that might not be 
thought to be related; to derive expressions for 
the variation of the G with T and p. 
Second: to introduce the chemical potential, a property that 
will be at the center of discussions in the remaining chapters 
of this part of the text; to derive expression of fugacity. 
The 'chemical potential', the quantity on which almost all the 
most  important  applicat ions of thermodynamics 
to chemistry are based.

5. The Second Law: the machinery
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The fundamental equations

Five state functions in the First and Second Laws: 

The internal energy: U
The entropy: S
The enthalpy: H
The Helmholtz energy: A
The Gibbs energy: G

H

UpV

pV A TS

TSG
H=U+pV 
A=U-TS 
G= H-TS = U+pV-TS =A+pV
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The First Law: dU =dq+dw
H

UpV

pV A TS

TSG

For a reversible change in a 
c losed system of  constant 
composition, and in the absence 
o f  a n y  n o n - e x p a n s i o n 
work:
d w = -pdV and  dq =TdS

dU=TdS-pdV

dU is an exact differential, its value is independent of path.

The fundamental equations
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H

UpV

pV A TS

TSG

dH = dU+ pdV + Vdp
=(TdS-pdV)+ pdV + V dp

H=U+pV,  A=U-TS,  G=U+pV-TS   

dA= dU-TdS-SdT
= (TdS -pdV) -TdS- SdT

dG = dU+pdV+ Vdp –TdS- SdT
= (TdS-pdV) +pdV+ Vdp –TdS- SdT

= TdS +V dp

= Vdp -SdT

= -p dV -SdT

The fundamental equations
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dU=TdS -pdV

dH=TdS+Vdp

dG=Vdp-SdT

dA=-pdV-SdT

H

UpV

pV A TS

TSG

The fundamental equations

The fundamental equations
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5.1 Properties of the internal energy

1). The Maxwell relations
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1). The Maxwell relations
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 ddd yhxgz +=

The first derivative of g with respect to y, and h to x

5.1 Properties of the internal energy



版权所有：华东理工大学物理化学教研室 11

1). The Maxwell relations
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1). The Maxwell relations
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2). The variation of internal energy with volume
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2). The variation of internal energy with volume
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Example - Deriving a thermodynamic relation

Show thermodynamically that πT = 0 for a perfect gas, 
and compute its value for a van der Waals gas

Method: Proving a result 'thermodynamically' means basing 
it entirely on general thermodynamic relations and 
equations of state. 

Answer: 1). For a perfect gas, pV = nRT, and
( ) V/nRTp V =∂∂

From the equation of p
T
pT

V
T −⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

=π

0=−= p
V

nRT
Tπ
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2). The equation of state of a van der Waals gas is 

That is 
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Example 5.1 Deriving a thermodynamic relation
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TSG d d −= pVd

For a closed system doing non-expansion work and at constant 
composition
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1). The outline of the Gibbs energy with T and p

5.2 Properties of the Gibbs energy
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The entropy of the gaseous phase 
of a substance is greater than that 
of the liquid phase, and the entropy 
of the solid phase is smallest, the 
Gibbs energy changes most steeply 
for the gas phase, followed by the 
liquid phase, and then the solid 
phase of the substance.

The variation of the Gibbs energy 
with the temperature is determined 
by the entropy

TSG d d −= pVd),( TpGG =

1). The outline of the Gibbs energy with T and p

S
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p
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∂ 

5.2 Properties of the Gibbs energy
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The volume of the gaseous phase 
of a substance is greater than that 
of the same amount of liquid phase, 
and the volume of the solid phase is 
smallest, the Gibbs energy changes 
most steeply for the gas phase, 
followed by the liquid phase, and then 
t h e  s o l i d  p h a s e  o f  t h e 
substance. The variation of the Gibbs energy 

with the pressure determined by the 
volume of the sample

),( TpGG =  d −=VdpG TSd
1). The outline of the Gibbs energy with T and p
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5.2 Properties of the Gibbs energy
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Example - Calculating the effect of pressure on the Gibbs energy

Calculate the change in the molar Gibbs energy of: 
(a) liquid water treated as an incompressible  

fluid ,and 
(b) water vapour treated as a perfect gas, when 

the pressure is increased isothermally from 
1.0 bar to 2.0 bar at 298 K.
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Method: In each case, the change in molar Gibbs
energy can be obtained by integration of the 
equation dG= Vd p –SdT with the temperature held
constant:

( ) ( ) pVpGpG
p

p
df

i
mimfm ∫=−

Example - Calculating the effect of pressure on the Gibbs energy
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For an incompressible fluid, the molar volume is 
independent of the pressure so Vm can be treated 
as a constant. For the incompressible liquid, Vm is 
constant at 18.0 cm3mol-1, then

Answer: 
(a) 

( ) ( ) ( )ifmmmm df

iif
ppVpVpGpG

p

p
−×==− ∫

( ) ( )Pa1001molm10018 5136 ×××= −− ..
113 Jmol8.1mol m Pa8.1 −− +=+=

Example- Calculating the effect of pressure on the Gibbs energy
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For a perfect gas, the molar volume varies with 
pressure as Vm = RT/p, so this expression must 
be used in the integrand, and the integration 
performed treating RT as a constant:

Answer: 
(b) 

( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
==− ∫

i

ff

i
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lndmm p
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RTp
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RTpGpG
p

p

( )
1

1

kJmol7.1
0.2lnkJmol48.2

−

−

+=

×=

Example - Calculating the effect of pressure on the Gibbs energy
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(a) For an incompressible

( ) ( ) 1
mm Jmol 1.8

if

−+=− pGpG

(b)  For a perfect gas

( ) ( ) 1
mm kJmol 1.7

if

−+=− pGpG

Example - Calculating the effect of pressure on the Gibbs energy
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2). The temperature dependence of the Gibbs energy
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2). The temperature dependence of the Gibbs energy
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2). The temperature dependence of the Gibbs energy
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3). The pressure dependence of the Gibbs energy

At constant temperature: )TSpVG d d(d −=

∫+= f

iif
d

p

p
pVpGpG )()(

For a liquid or solid, the volume changes only slightly as the 
pressure changes, so V may be treated as a constant.  For molar 
quantities:

( ) ( ) ( )
( ) pVpG

ppVpGpG
Δ+=

−+=

mim

ifmimfm

At normal lab. conditions VmΔp is small, so it suggests that 
the G of solid and liquid are independent of p.

5.2 Properties of the Gibbs energy
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3). The pressure dependence of the Gibbs energy

For a perfect gas, the Gibbs energy may depend strongly on 
the pressure; and the volume also varies markedly 
with the pressure. Then V = nRT/p:

( ) ∫+= f

i

d
i

p

p p
pnRTpG

∫+= f

iif
d

p

p
pVpGpG )()(

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

i

f
i p

pnRTpG ln

5.2 Properties of the Gibbs energy
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3). The pressure dependence of the Gibbs energy

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

i

f
if p

pnRTpGpG ln

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

o
o

p

pnRTGpG ln

If set pi=  ,  then the Gibbs energy of a perfect gas at a 
pressure p is related to its standard value by

p

5.2 Properties of the Gibbs energy
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Calculate the change in the molar Gibbs energy 
of hydrogen when its pressure is increased 
isothermally from 1.0 atm to 100.0 atm at 298K. 

Example
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Answer:

1.00mol hydrogen (id.g)

298K, 1.0atm,V1

1.00mol hydrogen (id.g)

298K, 100.0atm,V2

△G

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

i

f
if p

pnRTpGpG ln

)
p
p(RTG

i

f
m ln=Δ

1

11

kJmol1.411

)
1.00atm

100.00atmln(K)298()molJK3148(

−

−−

=

××= .

Example



版权所有：华东理工大学物理化学教研室 35

Combing the First and Second Laws
5.1 Properties of the internal energy
5.2 Properties of the Gibbs energy
5.3 The chemical potential of a pure substance

Real gases:the fugacity
5.4 The definition of fugacity
5.5 Standard states of real gases
5.6 The relation between fugacity and pressure

5. The Second Law: the machinery
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5.3 The chemical potential of a pure substance

V, U, H, S, A and G(general X) are extensive properties. X
depends on not only T and p, but also n.

1) Partial molar quantities

For a single phase system of a pure substance, Xm is certain when 
T and p are specific

X = nXm

For a mixture of pure substances at constant  T and  p

X = n1 Xm,1+ n2 Xm,2 + ···?
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For perfect gases, ΔV=ΔU =ΔH =0; ΔS ≠ 0, norΔA orΔG.
For real gases,  the change in extensive properties in a mixture is 
generally ΔX ≠ 0.

G2= n2Gm,2G1= n1 Gm,1

A2= n2 Am,2A1= n1 Am,1

S2= n2 Sm,2S1= n1 Sm,1

H2= n2 Hm,2H1= n1 Hm,1

U2= n2 Um,2U1= n1 Um,1

V2= n2 Vm,2V1= n1 Vm,1

T, pT, p
n2n1

Substance 2Substance 1

G
A
S
H
U
V 

T, p
n2+ n1

Mixture

?

5.3 The chemical potential of a pure substance
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Generally,  X = f (T, p, n1 , n2 ··· ), and

1) Partial molar quantities

⋅⋅⋅+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
⋅⋅⋅⋅⋅⋅⋅⋅⋅

1
1

322121

n
n
Xp

p
XT

T
XX

n,n,p,Tn,n,Tn,n,p

dddd

the partial molar quantity
jn,p,Tin

X
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

Note that: 1) X, extensive properties
2) at constant T and p

5.3 The chemical potential of a pure substance
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1) Partial molar quantities

jn,p,Ti
i n

VV ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
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=
jn,p,Ti

i n
UU ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
jn,p,Ti

i n
SS ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=

jn,p,Ti
i n

GG ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

= The chemical potential of component 
i in the mixture.

5.3 The chemical potential of a pure substance
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The chemical potential, μ, of a pure substance is defined as

For a pure substance, the Gibbs energy is G = nGm

pTn
Gμ

,

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=

m
m G

n
nGμ

pT

=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=
,

The chemical potential, μ, is the same as the molar Gibbs 
energy Gm.

2) The definition of chemical potential of a pure substance

5.3 The chemical potential of a pure substance
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m
m V

p
G

T

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

mGμ =pVG dd mm =

pV dd m=μ

3) The chemical potential

5.3 The chemical potential of a pure substance
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For a perfect gas:
p

RTV =m

p
pRT dd =μ

Let      denotes the standard chemical potential, the molar 
Gibbs energy of the pure gas at      (1 bar)

μ
p

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

o
o

p

pRT lnμμ

pV dd m=μ

5.3 The chemical potential of a pure substance
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The variation of chemical 
potential of a perfect gas with 
p

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

o
o

p

pRT lnμμ

p

The chemical potential, μ, of a 
perfect gas is proportional to 1n 
p, and the standard state is 
reached at 　.  Note that, as p  
→ 0 ,  μ becomes negatively 
infinite.

5.3 The chemical potential of a pure substance
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Combing the First and Second Laws
5.1 Properties of the internal energy
5.2 Properties of the Gibbs energy
5.3 The chemical potential of a pure substance

Real gases:the fugacity
5.4 The definition of fugacity
5.5 Standard states of real gases
5.6 The relation between fugacity and pressure

5. The Second Law: the machinery
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Real gases: the fugacity

At various stages in the development of physical 
chemistry it is necessary to switch from considera-tion of 
idealized systems to real systems. In many cases it is 
desirable to preserve the form of the expressions that 
have been derived for the idealized system. Then 
deviations from the idealized behavior can be expressed 
most simply. We shall illustrate such procedure in this 
section by considering how the expressions that have 
been derived for perfect gases, particularly the equation 
for the chemical potential of a perfect gas, are adapted 
t o  d e s c r i b e 
real gases.
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5.4 The definition of fugacity

For a real  gas, replace the true pressure, p, by an effective 
pressure, f , then the fugacity of a real  gas is defined as: 

The name 'fugacity' comes from the Latin for 'fleetness' in the 
sense of 'escaping tendency '. Fugacity has the same 
dimension as pressure. 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

o
o

p

fRT lnμμ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

o
o

p

pRT lnμμ

The chemical potential of a perfect  gas:
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• at higher  p, 
the repulsive forces are dominant and the 
`escaping tendency' is increased.

• at lower p, 
the attractive forces are dominant and the 
molecules have a lower `escaping tendency'. 

• as p→0, μ coincides with the value for a  
perfect gas. 

perfectreal μμ <

perfectreal μμ >

The μ of a real gas

For the chemical potential of a real gas:

5.4 The definition of fugacity
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A perfect gas is in its standard state when its pressure is    
(1 bar): the pressure arises solely from the kinetic energy 
o f  t h e  mo lecu le s  and  there  are  no  in t ermo-
lecular forces to take into account.  

op

The standard state of a real gas is a hypothetical state in which 
the gas is at a pressure     and behaving perfectly.op

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

o
o

p

fRT lnμμpV dd m=μ

5.5 Standard states of real gases
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p
fφ =

The fugacity coefficient, ϕ, is defined as:

pφf =or   

The fugacity coefficient,     : 
1). Dimensionless;  
2). depends on the identity of the gas, the pressure, 

and the temperature.

 φ
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pφRTlnμ
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p

fRTlnμμ

5.6 The relation between fugacity and pressure
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φRT
p
pRTμμ lnln +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

In terms of fugacity coefficient:

The terms of the     and           are the same as those in the 
above equation. Therefore, the              term must express 
the entire effect of all intermolecular forces.

  φRT ln

oμ op

pln

For all gases , f = p as p → 0, 1  lim
0

=
→ p

f
p

For a prefect gas:  f = p and ϕ =1; for a real gas: f ≠ p and 
ϕ ≠ 1. ϕ is a measure of a real gas derived from the perfect 
gas. 

5.6 The relation between fugacity and pressure



版权所有：华东理工大学物理化学教研室 51

The equation                  is true for all gases. Let f denotes the 
fugacity when the pressure is p and  f' the fugacity when the 
pressure is p', from the definition of fugacity we have:

pVμ dd m=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

°
+°== ∫ ° p

fRTμpVμ
f

p m lnd

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

°
+°== ∫ ° p

fRTμpVμ
f

p m
'ln'

'
d

5.6 The relation between fugacity and pressure
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If the gas were perfect:

⎟⎟
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fRTμμpV
p

p m d
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pRTμμpV
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p perfectperfectm perfect, d

The difference of the two equations is:
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nllndmperfect,m

5.6 The relation between fugacity and pressure
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( )∫ −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

p

p
pVV

RTf
p

p
f

'

1
'
'ln dmperfect,m

When p'→0, the gas behaves perfectly and f 'becomes 
equal to the pressure p'. Therefore, p'/f '→1 as p'→0.   
If we take this limit, this equation becomes:

( )∫ −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ p
pVV

RTp
f

0

1ln dmperfect,m

With ϕ = f / p

5.6 The relation between fugacity and pressure
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At a general pressure p, the fugacity coefficient of a gas 
is given by:

p
p

Zφ
p

d∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

0

1ln

where Z is the compression factor of the gas. This 
equation is an explicit expression for the fugacity 
coefficient at any pressure p. The fugacity of the 
gas at that pressure can be obtained by              .φ pf =

φRT
p

pRTμμ lnln +⎟
⎟

⎠

⎞
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⎝

⎛
+=

o
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5.6 The relation between fugacity and pressure
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Real gases: the fugacity

( )
p
pZφ

p d
∫ −=

0
1ln

The repulsive interactions are dominant and tend to drive 
the particles apart, and the chemical potential of the gas is 
greater than that of a perfect gas 

The molecules tend to stick together and the chemical 
potential of the gas is less than that of a perfect gas;

If Z> 1 throughout the rage of integration(higher pressure):

If Z < 1 throughout  the rage of integration：

The integrand < 0, ϕ < 1,            f < p,

The integrand > 0, ϕ > 1,           f > p,
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( )
p
pZφ

p d
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The chemical potential of a real gas and the fugacity, f:
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The fugacity coefficient, ϕ (f,p)， ϕ (Z,p):
pfφ= φpf =or   

The chemical potential of a perfect gas :
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The expression for chemical potential:

ϕμ lnln RT
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Real gases: the fugacity
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Example - Calculating a fugacity

Suppose that the attractive interactions 
between gas particles can be neglected, 
and find an expression for the fugacity of a 
van der Waals gas in terms of the pressure. 
E s t i m a t e  i t s  v a l u e  f o r 
ammonia at 10.00 atm and 298.15 K.
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Answer: the van der Waals equation is as followings:

2
mm V

a
bV

RTp −
−

=

bV
RTp
−

=
m

and

RT
bpZ += 1

bpRTpV +=m

hence

RT
pVZ m=

Method: The starting point for the calculation is equation

p
p

Zφ
p
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1ln

Example - Calculating a fugacity
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bp/RTe=ϕ

p
p

Zp
d1ln

0∫ ⎟⎟
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ϕ = f / p

 pf  ϕ=

( ) atm210atm0010 015150 .e.f . =×=

RTbppe=

RT
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0

For ammonia at 10.00 atm and 298.15 K

Example - Calculating a fugacity
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The fugacity coefficient of a certain gas at 290 K 
and 2.1MPa is 0.68. Calculate the difference of its 
chemical potential from that of a perfect 
gas in the same state. 

  
p
fφ =

Method:
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Example
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Answer:

φRTlnid =− μμ

1molJ  930 −−=

( ) ( ) ( )0.68ln290Kmol8.314JK 11 ××= −−

Example
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Consider  a  system  consisting  of  1.5  mol CO2 (g), 
initially  at  15℃ and  9.0  atm  and confined  to  a 
cylinder  of  cross-section  100.0  cm2. The sample is 
allowed to expand adiabatically against an external 
pressure  of  1.5  atm  until  the  piston  has  moved 
outwards  through  15  cm.  Assume  that  carbon 
dioxide  may  be  considered  a   perfect   gas   with 
CV,m=28.8 J K-1 mol-1, and calculate (a) q, (b) w, (c) 
△U, (d) △T, and (e) △S. 

Example
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(a). q:

(b). w: Vpw Δ−= ex

( ) ( ) ( ) 36

3
2

5

cm10
1m15cm100cm

atm
Pa101.011.5atm ×××

×
×−=w

Method and answer:

0=q(adiabatic)

J 227.2−=

(c). △U: wqU +=Δ J2227 .−=

Example
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(d). △T: TnCU m,V Δ=Δ

m

ΔΔ
,VnC

UT =

V
V

C
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K 5.28−=

Example
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i
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i p

nRTV =

( ) L 5.44
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1L15cm100cm3.942L 3
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-1KJ 23 .S =Δ

TTT Δif += 282.9K5.28K288.15K =−=

( ) ( )
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atm 9.0
288.2KmolLatmK108.2061.5atm 112
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×××

=
−−−

VVV Δif +=

Example
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