Modifications of Food Proteins

Food Processing and Storage

- Cooking and Industrial processing
 - Overall beneficial effect
 - Decrease spoilage
 - Increases shelf stability
 - Unfavorable reactions at primary structure level
 - Losses in nutritional quality
 - Losses in functionality
 - Increased risk of toxicity
 - Desirable and undesirable flavor changes

Processing & Storage

- Factors that can adversely affect proteins include
 - Heat
 - Extremes in pH
 - Exposure to oxidative conditions
 - Caused by oxidizing lipids
 - Other oxidizing agents
 - Reaction with CHOs

Moderate Heat Treatments

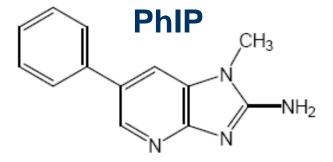
- Globular proteins
 - Reduces solubility
 - No disruption or formation of covalent bonds
 - Primary structure unaffected
- Beneficial
 - Inactivation of enzymes
 - Destruction of toxins or anti-nutritional factors
 - Improve digestibility

Moderate Heat Treatments

- Thermal treatments > 115C
 - Partial destruction of cysteine and cystine
 - Formation of hydrogen sulfide, dimethylsulfide and cysteic acid
 - Deamidation reactions (>100C)
 - Release of ammonia
 - Change in pl of proteins
 - Covalent Cross-links
 - Thermal treatments in presence of oxygen
 - Partial destruction of tryptophan residues

Severe Heat Treatments

• Temperatures > 200C as well as alkaline conditions


- Isomerization
 - ß-elimination
 - Reduces nutritional value
 - Digestibility
- Cyclic derivatives
 - Strong mutagenic action
 - Tryptophan \Rightarrow carbolines
- Destruction of Aas at alakaline conditions
 - Arginine
 - Cysteine
 - Ser, Thr, Lys

Influence of Severe Heat

- Lysine and Arginine side chains react with the free acids of glutamic and aspartic acid
 - isopeptide cross-links which can impede digestion and exhibit major effects on functionality
- Temperatures of 180 300C
 - Such as occur in roasted coffee, meat, fish and in the baking of some biscuits
- These reactions also account for some of the flavor and color developed as a result of the roasting process

Influence of Severe Heat

- Possible formation of toxic products
 - Mutagenic activity on flamebroiled fish and beef
 - Several mutagens are of protein and amino acid origin
- These compounds are only formed at temperatures in excess of 300°C

Table 1. Reported Levels of PhIP and MelQx in Selected Meats, Poultry, and Fish Products

	PhIP (ng/g product)	MelQx (ng/g product)
Hamburgers, pan-fried ("home-cooked")	0-32	0-10
Beef steak, broiled/grilled/fried	0.6-48.5	0.5-8.3
Chicken breasts, pan-fried	12-70	0
Chicken breasts, grilled (barbecued)	27-480	0-9
Fish, broiled/grilled	2-73	0-5
Fish, pan-fried	1.7-69	1.4-6
Fast food hamburgers (fried or charbroiled)	0.1-0.6	0-0.3
Fast food chicken (chicken breast sandwiches and deep-fried chicken)	0	0
Fast food breakfast sausages	0	0-0.3
Fast food fish (sandwiches)	0	0

Alkaline pH

- Thermal treatments at alkaline
 - Covalent Cross-Links
 - Condensation reaction of Lys, Cys or Ornithine with DHA (cysteine or phosphoserine)
 - Lower nutritional value
 - Toxicity?

Photo-oxidation of Proteins

- The precise changes and pathways of destruction are influenced by
 - Irradiation wavelength
 - Irradiation dose
 - Reaction conditions
 - Individual amino acid being irradiated
- Two of the potent photosensitizers in foods are riboflavin and chlorophyll
- The sulfur amino acids exhibit more measurable photodecomposition than the aliphatic amino acids

Interaction with Lipids

- Lipid hydroperoxides causes polymerization of proteins
- Lipid peroxidation free radicals serve as initiators
- Substantial losses in amino acids when proteins are exposed to peroxidizing lipids
- Methionine, histidine, cystine and lysine are the most vulnerable to damage
- Losses in digestibility and biological value of the proteins after oxidation

Interaction with Lipids

- Maximum interaction or degradation of the protein takes place when the lipid oxidation is at the stage of maximum peroxide formation
 - Losses in available lysine appeared to take place in the initial induction period and during the induction of peroxides
 - Oxidations and cross-links generated tend to adversely affect
 - Solubility
 - Enzyme activity
 - Nutritive quality

Interaction with Oxidizers

• Chlorine

- Environmental oxidizer which can damage protein quality
- The initial side of attack of the chlorine is the sulfur of methionine
- Nutritional impact not likely to be significant, since foods produced from chlorinated flour are not generally consumed as sole sources of protein
 - The loss of small amounts of methionine would not be significant

Interaction with Carbohydrates

Maillard