Proteins

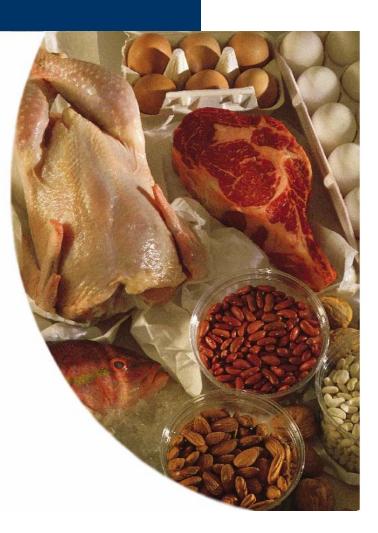
Definition

- Protein from the Greek proteios, meaning primary.
- Proteins are the work horses of biological systems.
 - They play key roles in constructing and maintaining living cells
- Our genes code for proteins
- Proteins are polymers of amino acids

Proteins are:

Polypeptides + (cofactors, coenzymes, prosthetic groups, other modifications)

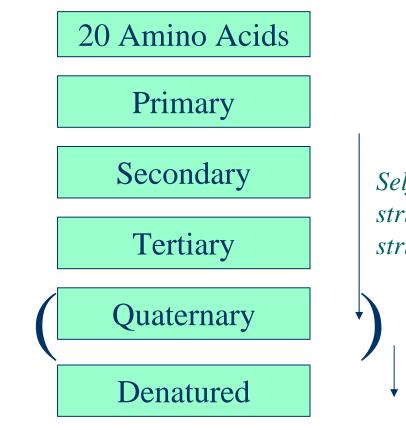
- Polypeptides are covalently linked α -amino acids
- Cofactors are non-amino acid components e.g. metal ions like Zn²⁺ in carboxypeptidase
- Coenzymes are organic cofactors e.g. nucleotides in lactate dehydrogenase
- Prosthetic groups are covalently attached cofactors e.g. heme in myoglobin


Roles played by proteins include

- Enzymes (biological catalysts)
- Hormones
- Storage proteins
- Transport proteins
- Structural proteins
- Protective proteins
- Contractile proteins
- Toxic proteins

Food Proteins

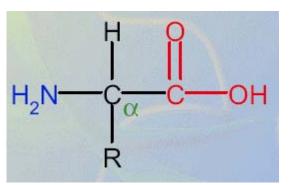
- Palatable
- Digestible
- Non-toxic
- Available Economically

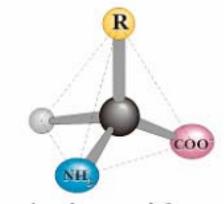

Proteins in the Diet

- 9 of the 20 amino acids must be obtained from the diet
- These are referred to as the essential amino acids.
 - Histidine
 - Isoleucine
 - Leucine
 - Lysine
 - Methionine
 - Phenylalanine
 - Threonine
 - Tryptophan
 - Valine

• Proteins are also the major source of nitrogen in the diet

Protein Structure


Self assembly to a single (native) structure. Depends on primary structure and solution conditions


> Common in foods. Many non-native forms depending on protein structure, solution conditions (& history) and ingredient interactions

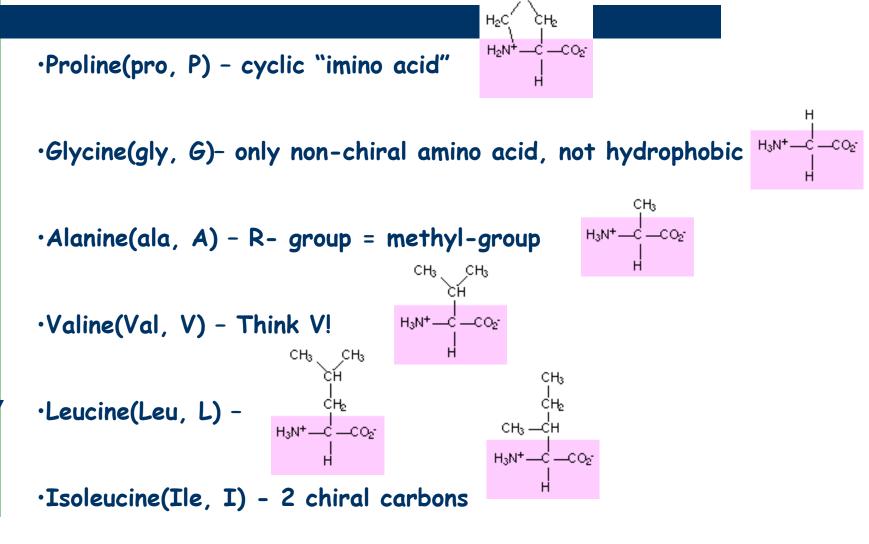
Protein Structure and Function

- Protein are polymers of α-amino acids
- The amino acids used to make proteins are 2-aminocarboxylic acids.

• The α (alpha) carbon is the carbon to which a functional group is attached.

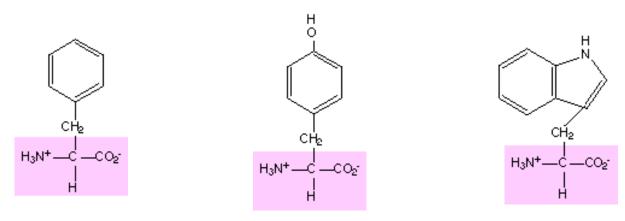
Properties of Amino Acids

- structure and chemical functionality
- chirality
- acid-base properties
- capacity to polymerize

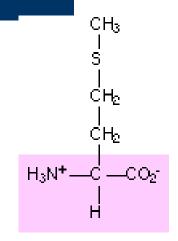


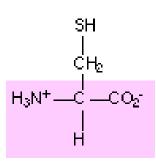
Properties of Amino acids

- Aliphatic chains: Gly, Ala, Val, Leu, and Ile
 Pro?
- Hydroxyl or sulfur side chains: Ser, Thr, Cys, Met
- Aromatic: Phe, Trp, Tyr
- Basic: His, Lys, Arg
- Acidic and their amides: Asp, Asn, Glu, Gln


Aliphatic (alkane) Amino Acids

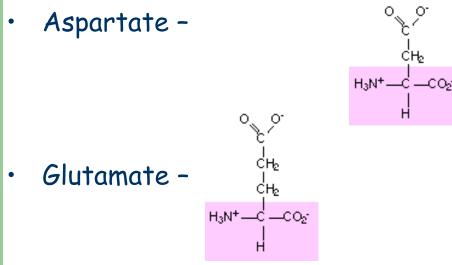
Aromatic Amino Acids


- All very hydophobic
- All contain aromatic group
- Absorb UV at 280 nm
- Phenylalanine(Phe, F)
- Tyrosine(Tyr,Y) -OH ionizable (pKa = 10.5), H-Bonding
- Tryptophan(Trp, W) bicyclic indole ring, H-Bonding

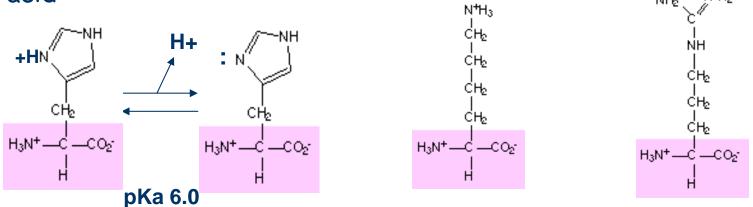


Sulfur Containing Amino Acids

- Methionine (Met, M) "start" amino acid, very hydrophobic
- Cysteine (Cys,C) sulfur in form of sulfhydroyl, important in disulfide linkages, weak acid, can form hydrogen bonds.

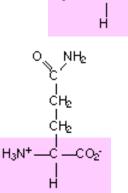


Acidic Amino Acids


- Contain carboxyl groups (weaker acids than α -carboxyl-group)
- Negatively charged at physiological pH, present as conjugate bases (therefore -ate not -ic acids)
- Carboxyl groups function as nucleophiles in some enzymatic reactions

Basic Amino Acids

- Hydrophillic nitrogenous bases
- Positively charged at physiological pH
- Histidine imidazole ring protonated/ionized, only amino acid that functions as buffer in physiol range.
- Lysine diamino acid, protonated at pH 7.0
- Arginine guianidinium ion always protonated, most basic amino acid



Polar Uncharged Amino Acids

Serine(Ser, S) - looks like Ala w/ -OH

Threonine(Thr, T) - 2 chiral carbons
 H_{3N+} - C - CO₂

- Asparagine(Asn, N) amide of aspartic acid
- Glutamine (Gln, Q) amide of glutamic acid

NHe

он І сң

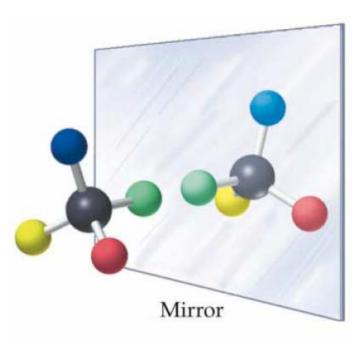
H₃N⁺---C₂---CO₂-

OH

Other Amino Acids - in proteins

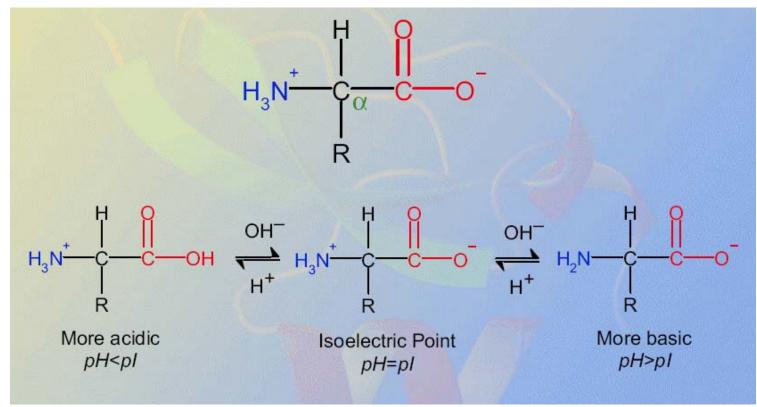
Result from "post-translational" modifications examples:

- Hydroxylysine, hydroxyproline collagen
- Carboxyglutamate blood-clotting proteins
- Pyroglutamate bacteriorhodopsin
- Phosphorylated amino acids signaling device
- D- alanine, D-glutamic acid: bacterial cell wall polypetides
- γ -aminobutyric acid: neurotransmitter
- Homoserine: intermediate in amino acid metabolism
- Ornithine: intermediate in arginine synthesis


Functional significance

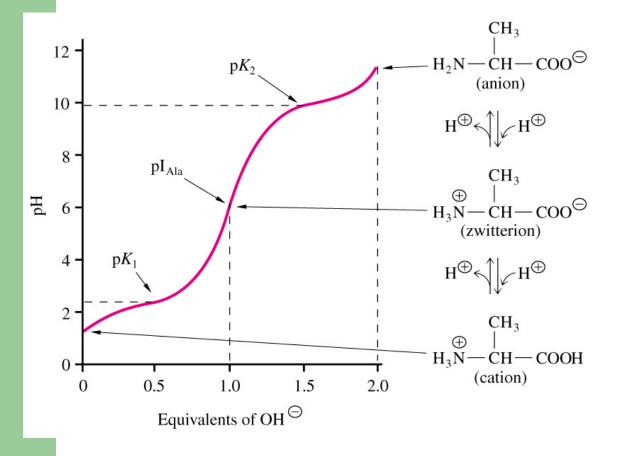
- Hydrophobic amino acids: encountered in the interior of proteins shielded from direct contact with water
- Hydrophillic amino acids: generally found on the exterior of proteins as well as in the active centers of enzymes
- Imidazole group: act as either proton donor or acceptor at physiological pH
 - Reactive centers of enzymes
- Primary alcohol and thiol groups: act as nucleophiles during enzymatic catalysis
 - Disulfide bonds

Stereochemistry of Amino acids

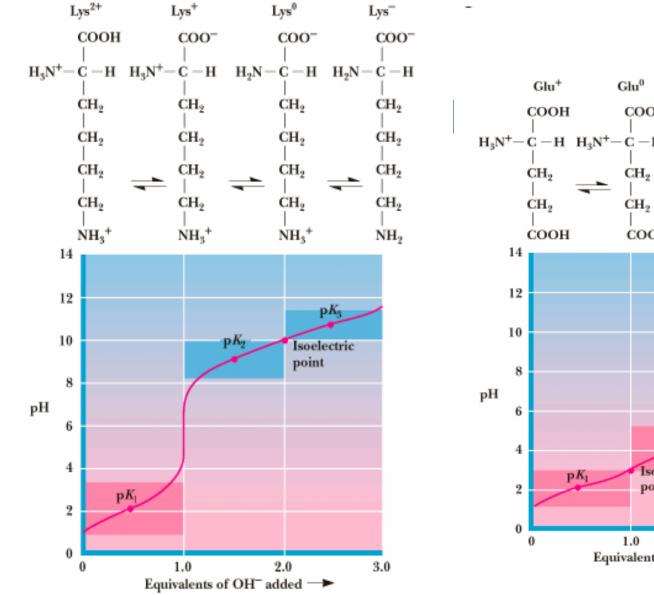

- Amino acids are *chiral* (asymmetric)
 - Presence of an asymmetric carbon atom
- Natural proteins are made only from left-handed amino acids

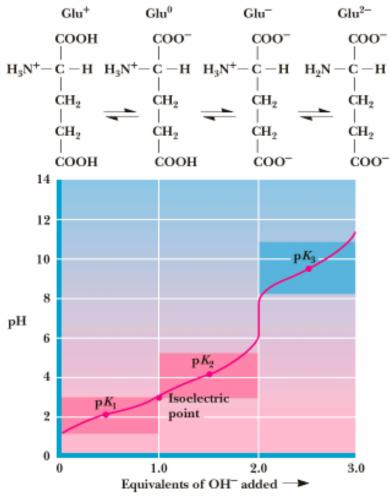
Acid-Base Properties of amino Acids

• Amino acids are zwitterions:

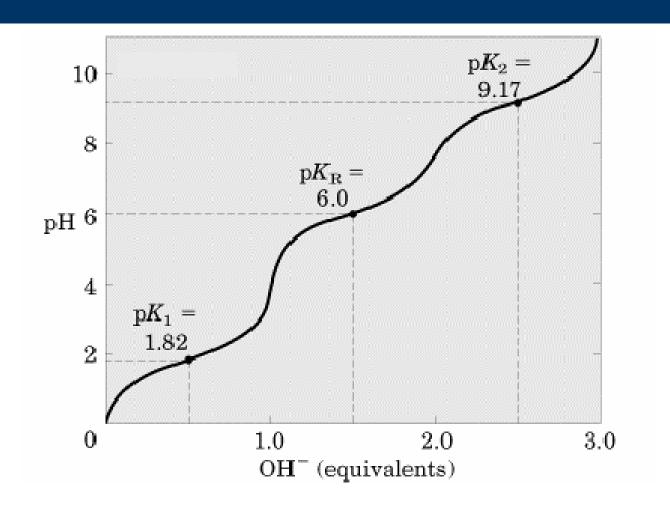


Amino ooid	nKa1	nkal	nKoD	nl
Amino acid	pKa1	pKa2	pKaR	pl
	(α - COO ⁻)	(α - ⁺ NH3)	R= side chain	
Alanine	2.35	9.69		6.02
Arginine	2.17	9.04	12.48	10.76
Asparagine	2.01	8.8		5.41
Aspartic acid	2.09	9.82	3.86	2.97
Cysteine	1.96	10.28	8.18	5.07
Glutamine	2.17	9.13		5.65
Glutamic acid	2.19	9.67	4.25	3.22
Glycine	2.34	9.78		6.06
Histidine	1.82	9.17	6	7.58
Isoleucine	2.36	9.68		6.02
Leucine	2.36	9.64		6
Lysine	2.18	8.95	10.53	9.74
Methionine	2.28	9.21		5.75
Phenylalanine	1.83	9.24		5.53
Proline	1.99	10.06		6.3
Serine	2.21	9.15		5.68
Threonine	2.71	9.62		6.16
Tryptophan	2.38	9.39		5.89
Tyrosine	2.2	9.11	10.07	5.65
Valine	2.32	9.62		5.97

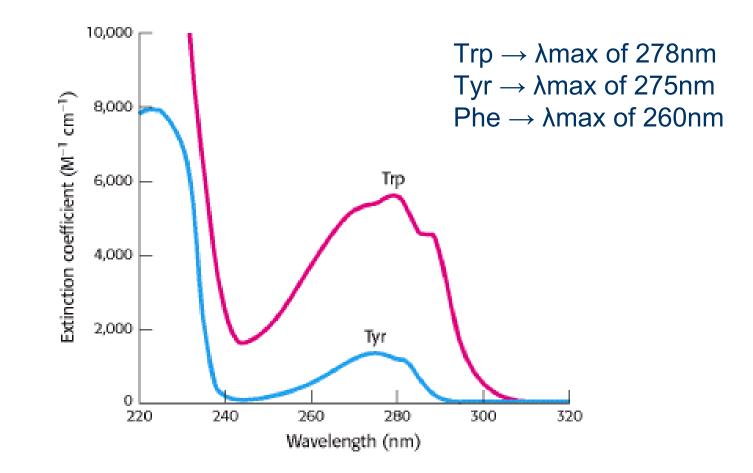



Acid-base titration

pK₁ carboxylic acid = 2
pK₂ amino group = 10
pI = (pK₁+ pK₂)/2

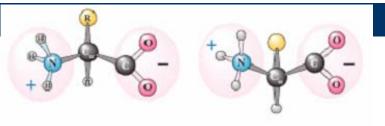


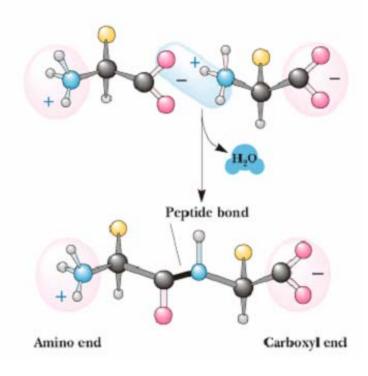
Titration Curves

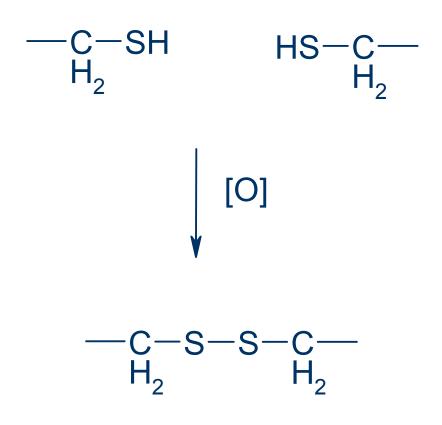


Amino Acids Differ in Their Acid-Base Properties

- Amino acids with an ionizable R group have more complex titration curves, with three stages corresponding to the three possible ionization steps
- The additional stage for the titration of the ionizable R group merges to some extent with the other two.
- The isoelectric points reflect the nature of the ionizing R groups present.




Absorption spectra of Aromatic amino acids


Peptide Bond Formation

Disulfide bridge

• Two cysteine molecules under oxidizing conditions

Disulfide bond

- Disulfide bonds between Cys residues stabilize the structures of many proteins.
- Although Cys is a polar AA, the disulfidelinked residues (Cystine) are strongly hydrophobic.

Other Reactions

• Ninhydrin

- Purple, blue or violet derivatives, 570nm
- Yellow for proline, 440 nm
- Phenylisothiocyanate
- Dansyl chloride