Chemical Kinetics

Energy

 Chemical reactions proceed if the products of the reaction have lower free energies than do the reactants

The fundamental equations of thermodynamics

• The first law of thermodynamics

 $\Delta U = \Delta Q + \Delta w$

the total energy of a system is constant.

• Enthalpy, H, is a function that describes energy changes at constant pressure.

 $\Delta H_{\rho} = c_{\rho} (\Delta T)_{\rho}$

• For a biological system it defines the internal energy of a system

– HEAT

 $\Delta H = +ve \Rightarrow$ heat is absorbed \Rightarrow ENDOTHERMIC $\Delta H = -ve \Rightarrow$ heat is evolved (given out) \Rightarrow EXOTHERMIC

The reaction profile

The fundamental equations of thermodynamics

- The second law of thermodynamics
 Spontaneous processes are those which increase the entropy of the universe (i.e. system + surroundings).
- Entropy is equal to a measurement of the randomness of a system.

$$dS = \frac{dq_{rev}}{T}$$

The fundamental equations of thermodynamics

• The Gibbs Free Energy

$$v_1 A + v_2 B \leftrightarrow v_3 C + v_4 D$$

 $\Delta_{\rm r}G^0 = \sum v_{\rm i}\Delta_{\rm f}G^0({\rm products}) - \sum v_{\rm i}\Delta_{\rm f}G^0({\rm reactants})$

dG = dH - TdS or $\Delta G = -RT \ln K_{eq}$

- i) If $\Delta G^0 < 0$ (exergonic, from the Greek word for work-producing) the **forward** reaction is spontaneous.
- (ii) If $\Delta G^0 > 0$ (endergonic, signifying work-consuming) the **reverse** reaction is spontaneous.
- (iii) If $\Delta G^0 = 0$ the reaction is at equilibrium.

Chemical Kinetics

- Study of the rates of chemical reactions and the factors that influence the rates.
- Collision Theory
 - Collisions between reacting molecules are necessary before a reaction can occur
 - Only those collisions having sufficient energy are effective in bringing about a reaction activation energy
 - Colliding molecules must be properly oriented with respect to one another for the reaction to take place

Chemical kinetics

Factors affecting *reaction rate*: Concentrations of reactants Catalyst Temperature Surface area of solid reactants or catalyst

Surface Area

Example

• The reaction:

 $2H_2O_2 \longrightarrow 2H_2O + O_2$

Catalyst	E _a	n ₁ /n	Relative rate	
None	18,000	5.6 x 10 ⁻¹⁴	1	
 -	13,500	1.16 x 10 ⁻¹⁰	2.07 x 10 ³	
Catalase	6,400	1.95 x 10⁻⁵	3.47 x 10 ⁸	

Tangent 2

Reaction Rate Defined

Reaction rate: changes in a concentration of a product or a reactant per unit time.

 $A[] \rightarrow \text{concentration}$ *Reaction rate* = ----

$$\Delta t$$
 change

[] Tangent T Tangent 2

Tangent 1

•Non-disruptive techniques

Disruptive techniques: Chemical Analysis Method

Reaction Order

Reaction Plots

Integrated Rate Laws concentrations as functions of time

One reactant A decomposes in 1st or 2nd order rate law.

Differential rate law

Integrated rate law

- d[A] / dt = k

$$-\frac{d[A]}{dt} = k[A]$$

$$-\frac{d[A]}{dt} = k[A]^2$$

$$[A] = [A]_{0} - kt$$

[A] = [A]_{0} e^{-kt} or ln [A] = ln [A]_{0} - kt

 $\begin{array}{cccc}
1 & 1 & [A] & \text{conc at } t \\
\hline
- & - & - & - & - & - & - & k \\
\hline
[A] & [A]_0 & [A]_0 & \text{conc at } t = 0
\end{array}$

Concentration and time of 1st order reaction

Half life & k of First Order Decomposition

The time required for half of A to decompose is called half life $t_{1/2}$.

Since $[A] = [A]_{0} e^{-kt}$ or $\ln [A] = \ln [A]_{0} - kt$ When $t = t_{1/2}, [A] = \frac{1}{2} [A]_{0}$ Thus

Radioactive decay usually follow 1st order kinetics, and half life of an isotope is used to indicate its stability.

Arrhenius Equation

The temperature dependence of the rate constant *k* is best described by the Arrhenius equation:

$$k = A e^{-\frac{Ea}{R}} R^{T}$$

or
$$\ln k = \ln A - \frac{E_a}{R} R^{T}$$

If k_1 and k_2 are the rate constants at T_1 and T_2 respectively, then

$$k_{1} = \frac{E_{a}}{-} = \frac{1}{-} = \frac{$$

Typical activation energies

	Kcal/mole
Diffusion controlled	0- 8
Enzyme reactions	10 - 15
Hydrolysis	15 - 25
Lipid oxidation	10 - 25
Nonenzymatic browning	25 - 50
Spore destruction	60 - 80
Vegetative cell destruction	50 - 150
Protein denaturation	80 - 120

Q₁₀ Reaction rate

• Alternative way of expressing temperature dependance

$$Q_{10} = \frac{\text{Rate} (a) \text{ T} + 10}{\text{Rate} (a) \text{ T}}$$
 $Q_{10} = 10^{\left\lfloor \frac{2.186 E_A}{(T)(T+10)} \right\rfloor}$

- Extensively used by the food industry
- Model used to describe how much faster/slower a reaction will go if the product is held at some other temperature
- Used to predict expected product shelf life
 - ASLT

Q₁₀ and shelf life prediction

	Q10	_Q10		
<u>T°C</u>	2	2.5	4	<u>5</u>
50	2	2	2	2 weeks
40	4	5	8	10 weeks
30	8	12.5	32	50 weeks
20	16 wk	31 wk	2.5 yr	4.8 yr

Q₁₀ Practical problems

- too large ∆T
- phase change
 - freeze range to refrigerated range
 - lipid melting
 - reactant crystallizes out or solubilizes
 - transition over glass rubber point
- concentration due to freezing
- high temperatures: Protein denaturation
- simultaneous competing mechanisms - multiple pathways of different EA

- water activity change with temperature
- oxygen solubility (20% decrease per 10°C rise)
- moisture change due to humidity difference in chambers
- change in film permeability to oxygen, CO₂, water
- viscosity change of reaction phase free volume dependence
- change of mechanism
 - different microbes or NEB vs Lipid oxidation

Chemical Reaction and Molecular Collision

Molecular collisions lead to chemical reactions. Thus, the reaction constant, k is determined by several factors.

k = Z f p

Z: collision frequency p_i , the fraction with proper orientation f_i fraction of collision having sufficient energy for reaction f is related to the potential energy barrier called activation energy, E_a . $f \propto e^{-Ea/RT}$ or $exp(-E_a/RT)$ $n_1 = number of molecules with an energy$ $of <math>E_a$ or greater $n_1/n = exp(-Ea/RT)$ n = the total number of molecules

Example

• The rate constant for color formation on the surface of grilled meat was calculated as a function of temperature. Plot the data as an Arrhenius plot and calculate the activation energy for the browning reaction

Temp/ °C	100	120	140	160	180	200
rate/h⁻¹	0.001591	0.001875	0.002174	0.002487	0.002811	0.003146

Example

- The Ea for a non-enzymatic browning reaction is ~ 30,000 cal/mol
- The Ea for enzymatic denaturation is ~100,000 cal/mol
- You know that 30 min at 80°C will inactivate the enzyme you are concerned with. You have, however, a very brown product.
- A colleague recommends you to use 110°C for 1 sec. Will this work?