# **Food Lipids**

### Lipids

 "Lipids consist of a board group of compounds that are generally soluble in organic solvents but only sparingly soluble in water...." "...Glycerol esters of fatty acids, which make up 99% of the lipids of plant and animal origin have traditionally been called fats and oils"

Nawar, "Lipids" Food Chemistry, Fennema Ed. 1996

Lipids are non-polar (hydrophobic) compounds, soluble in organic solvents.

Fatty acids consist of a hydrocarbon chain with a carboxylic acid at one end.

**CH<sub>3</sub>(CH<sub>2</sub>)<sub>n</sub>-COO-**

Non-polar polar

### **Saturated Fatty Acids**

| Systematic name | Trivial name          | Shorthand designation | Molecular<br>wt. |
|-----------------|-----------------------|-----------------------|------------------|
| butanoic        | butyric               | 4:0                   | 88.1             |
| pentanoic       | valeric               | 5:0                   |                  |
| hexanoic        | caproic               | 6:0                   | 116.1            |
| octanoic        | caprylic              | 8:0                   | 144.2            |
| nonanoic        | pelargonic            | 9:0                   | 158.2            |
| decanoic        | capric                | 10:0                  | 172.3            |
| dodecanoic      | lauric                | 12:0                  | 200.3            |
| tetradecanoic   | myristic              | 14:0                  | 228.4            |
| hexadecanoic    | palmitic              | 16:0                  | 256.4            |
| heptadecanoic   | margaric<br>(daturic) | 17:0                  | 270.4            |
| octadecanoic    | stearic               | 18:0                  | 284.4            |
| eicosanoic      | arachidic             | 20:0                  | 312.5            |
| docosanoic      | behenic               | 22:0                  | 340.5            |



## **Mono-Unsaturated Fatty Acids**

| Systematic name     | Trivial name           | Shorthand designation | Molecular wt. |
|---------------------|------------------------|-----------------------|---------------|
| cis-9-tetradecenoic | myristoleic            | 14:1(n-5)             | 226.4         |
| cis-9-hexadecenoic  | palmitoleic            | 16:1(n-7)             | 254.4         |
| cis-9-octadecenoic  | oleic                  | 18:1(n-9)             | 282.4         |
| tr-9-octadecenoic   | elaidic                | tr18:1(n-9)           | 282.4         |
| cis-11-octadecenoic | vaccenic<br>(asclepic) | 18:1(n-7)             | 282.4         |
| cis-11-eicosenoic   | gondoic                | 20:1(n-9)             | 310.5         |
| cis-13-docosenoic   | erucic                 | 22:1(n-9)             | 338.6         |



# **Poly-Unsaturated Fatty Acids**

| Systematic name                 | Trivial name | Shorthand designation | Molecular<br>wt. |
|---------------------------------|--------------|-----------------------|------------------|
| 9,12-octadecadienoic            | linoleic     | 18:2(n-6)             | 280.4            |
| 6,9,12-octadecatrienoic         | γ-linolenic  | 18:3(n-6)             | 278.4            |
| 9,12,15-octadecatrienoic        | α-linolenic  | 18:3(n-3)             | 278.4            |
| 6,9,12,15-octadecatetraenoic    | stearidonic  | 18:4(n-3)             | 276.4            |
| 5,8,11,14-eicosatetraenoic      | arachidonic  | 20:4(n-6)             | 304.5            |
| 5,8,11,14,17-eicosapentaenoic   | EPA          | 20:5(n-3)             | 302.5            |
| 4,7,10,13,16,19-docosahexaenoic | DHA          | 22:6(n-3)             | 328.6            |







### **Phospholipids**

- P<sub>i</sub> is in turn esterified to OH of a polar head group (X): e.g., serine, choline, ethanolamine, glycerol, or inositol.
- The 2 fatty acids tend to be non-identical. They may differ in length and/or the presence/absence of double bonds.



| Name of<br>glycerophospholipid           | Name of X                         | Formula of X                                                                              | Net charge<br>(at pH 7) |
|------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------|-------------------------|
| Phosphatidic acid                        | _                                 | — Н                                                                                       | -1                      |
| Phosphatidylethanolamine                 | Ethanolamine                      | - $CH_2$ - $CH_2$ - $NH_3$                                                                | 0                       |
| Phosphatidylcholine                      | Choline                           | - CH <sub>2</sub> -CH <sub>2</sub> - $\overset{+}{N}$ (CH <sub>3</sub> ) <sub>3</sub>     | 0                       |
| Phosphatidylserine                       | Serine                            | $- \underset{\text{COO}^-}{\text{CH}_2\underset{\text{COO}^-}{\overset{+}{\text{NH}_3}}}$ | -1                      |
| Phosphatidylglycerol                     | Glycerol                          | - CH <sub>2</sub> -CH-CH <sub>2</sub> -OH<br>OH                                           | -1                      |
| Phosphatidylinositol<br>4,5-bisphosphate | myo-Inositol 4,5-<br>bisphosphate | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | -4                      |
| Cardiolipin                              | Phosphatidyl-<br>glycerol         | $-CH_2$<br>CHOH $OCH_2-O-P-O-CH_2O^ OCH-O-C-R^1OCH_2-O-C-R^2$                             | -2                      |

# **Sphingolipids**

- Sphingolipids are derivatives of the lipid sphingosine, which has a long hydrocarbon tail, and a polar domain that includes an amino group.
- The amino group of sphingosine can form an amide bond with a fatty acid carboxyl, to yield a ceramide.



# **Sphingolipids**

- Sphingomyelin, a ceramide with a phosphocholine or phosphethanolamine head group, is a common constituent of plasma membranes
- A cerebroside is a sphingolipid (ceramide) with a monosaccharide such as glucose or galactose as polar head group.



### **Attributes of Food Lipids**

- Three major functions in foods
  - Energy and health
  - Influence food flavors
    - free fatty acids contribute flavors
    - lipids act as solvents for carrying hydrophobic flavors and aromas (and nutrients)
  - Texture
    - Solid vs liquid
    - Emulsions

Attributes determined by types and positions of fatty acids on glycerol backbone



# **Plant Triglycerides**

#### • Coconut oil

- 80% of triacylglycerols are trisaturated
  - Lauric at sn-2
  - Octanoic at sn-3
  - Myristic or palmitic at sn-1



# Plant Triglyceride S

- Peanut Oil
  - ~40% oleic;
    40%linoleic
  - sn-2 largely unsat'd









Tallow heterogeneous: solid/liquid over wide temp range

# (Coultate, 1989; © Royal Society of Chemistry) Animal Triglycerides



- Milk Fat Large number of short-chain fatty acids
  - affects cheese flavor
  - causes milk rancidity

Marine Oils

 Long-chain unsaturated fatty acids

# **Summary of Fatty Acid Profiles**

#### • Plant fats/oils:

- sn-2 largely unsaturated fatty acid (C18:1 & C18:2)
- some plant oils contain high unsaturated fatty acid contents (peanut, soybean, olive, Canola)
- other plant oils significantly saturated (cocoa butter)
- coconut and palm oil primarily saturated— rich in C8:0-C16:0
- Animal fats/oils:
  - broader range of fatty acids/triglycerides found
    - milk fat (short chains) vs fish oils (long, polyunsat'd)
  - sn-2 often saturated, greater variation in positions

# **Properties**

# Crystallization

#### Crystallization/Melting is balance

- entropic considerations
  - favor increased molecular motion

# HOOC HOOC HOOC

Melt (liquid)



crystal (solid)

#### and

- attractive intermolecular interactions
  - favor packing molecules close together



- hydrogenation increases M.P.





# **Melting Point Trends**

| Fatty A cid        | <u>Comm on Name</u> | <u>M.P.</u> |
|--------------------|---------------------|-------------|
| 8:0                | Caprylic acid       | 16ºC        |
| 16:0               | Palmitic acid       | 63ºC        |
| 18:0               | Stearic acid        | 69°C        |
| 20:0               | Arachidic acid      | 75ºC        |
| 18:1∆9 (cis)       | Oleic acid          | 13ºC        |
| 18:2∆9,12 (cis)    | Linoleic acid       | -5°C        |
| 18:3∆9,12,15 (cis) | Linolenic acid      | -11⁰C       |
| 18:1∆9 (trans)     | Elaidic acid        | 46°C        |
| 18:2∆9,12 (trans)  | Linolelaidic acid   | 28°C        |

# Surfactants (Emulsifiers)

- Surfactants are molecules that lower the surface tension
  - Part of molecule interacts favorably with water
    - Polar or charged (hydrophilic)
  - Part of molecule interacts unfavorably with water
    - Hydrophobic



## **Lipid Surfactants**

• Fatty Acids



Monoglycerides and Diglycerides



### **Lipid Surfactants**

#### • Phospholipids





### **Synthetic Emulsifiers**





### **Surfactants**



Mixture of saturated and unsaturated fatty acids

 Mediates interactions between hydrophobic and hydrophilic phases



Hydrophilic Head

Hydrophobic Interior

Hydrophilic Head



## **Emulsion Breakdown: Creaming**

- Density differences between droplets and continuous phase cause droplets to rise or fall
  - In oil-in-water emulsions, droplets typically rise
- Creaming rate depends on
  - droplet size
    - decrease drop size (e.g. homogenized milk)
  - viscosity of continuous phase
    - add macromolecules (termed stabilizers) to increase viscosity

# Reactions

## **Reactions of Triglycerides**

• Hydrolysis triglycerides <u>H<sub>2</sub>O</u>

diglycerides, monoglycerides, glycerol + fatty acids

- saponification (base catalyzed)
- enzymatic hydrolysis (lipase catalyzed)
- interesterification (randomization)
- Hydrogenation unsaturated lipids  $H_2$

saturated lipids trans isomers

Oxidation

# Acid Hydrolysis

• Addition of water to cleave ester bond -also called lipolysis  $sn-1 CH_2^- O \stackrel{\frown}{=} C - R_1$   $R_2^- C \stackrel{\frown}{=} O \stackrel{\frown}{=} C - R_1$   $R_2^- C \stackrel{\frown}{=} O \stackrel{\frown}{=} C - R_1$   $R_2^- C \stackrel{\frown}{=} O \stackrel{\frown}{=} C - R_3$ • Catalyzed by strong acid

Produces free fatty acids

### Lipases

- Can also be catalyzed by enzymes
  - hydrolases or lipases - found in plants and animals - in vivo digestion  $R_2^- C^- O - C^- R_1$   $R_2^- C^- O - C^- H$  Sn-2  $CH_2^- O - C^- R_1$  $R_2^- O - C^- R_1$



 Table 1. Summary of the physiologically important lipases. The roles of these lipases (except lipoprotein and hormone-sensitive lipases) are depicted in Figure 1.

 DAG = Diacylglycerol; FFA = Free Fatty Acid

| Lipase                                              | Site of Action           | Regulation                                     | Preferred Substrate                                                       | Carbon<br>Position<br>cleaved | Product(s)                           |
|-----------------------------------------------------|--------------------------|------------------------------------------------|---------------------------------------------------------------------------|-------------------------------|--------------------------------------|
| lingual/acid-stable<br>lipase                       | mouth, stomach           |                                                | triacylglycerol with<br>medium-chain fatty acids                          | 3                             | FFA+DAG                              |
| pancreatic lipase                                   | small intestine<br>lumen | colipase (+)                                   | triacylglycerol with long-<br>chain fatty acids                           | 1 and 3                       | FFA+2MG                              |
| milk lipase                                         | small intestine<br>lumen | bile acids (+)                                 | triacylglycerol with<br>medium-chain fatty acids                          | 1 and 2<br>and 3              | FFA+glycerol                         |
| phospholipase A <sub>2</sub><br>(PLA <sub>2</sub> ) | small intestine<br>lumen | bile acids (+)<br>Ca <sup>2+</sup> (+)         | phospholipids (lecithin)<br>with unsaturated fatty acid<br>in #2 position | 2                             | unsaturated<br>FFA +<br>lysolecithin |
| lipoprotein lipase <sup>1</sup>                     | capillary walls          | apo CII (+)<br>insulin (+)                     | triacylglycerol in<br>chylomicron or VLDL                                 | 1 and 2 and 3                 | FFA+glycerol                         |
| hormone sensitive<br>lipase <sup>2</sup>            | inside adipose<br>cell   | insulin (-)<br>glucagon (+)<br>epinephrine (+) | triacylglycerol stored in<br>adipose cells                                | 3                             | FFA+DAG                              |

## **Hydrolysis: Products**

- Small quantities of free fatty acids
  - contribute flavors to cheese, milk chocolate
  - cause off-flavors in milk, fruits and vegetables
  - lead to foaming
    - removed during commercial production of food oils

### **Saponification**



### Interesterification

- Rearrange the fatty acids so they become distributed randomly among triacylglycerol molecules of the fat
- Improves consistency of fats
- Applications:
  - Manufacture of shortenings
  - Lard (want ~10% tri-saturated glycerides)
    - Forms large and coarse crystals
    - Shortenings posses grainy consistency and poor baking performances
    - Randomization improves plastic range
  - Production of high stability margarine blends and hard butters with desirable melting qualities and crystallization behavior

### Interesterification





## **Hydrogenation**

- Rate is determined by
  - Nature of substrate
  - Type and concentration of catalyst
  - Pressure (concentration of H<sub>2</sub>)
  - Temperature
  - Agitation

## **Hydrogenation: Products**

Produces triglycerides with higher melting points

liquid  $\Rightarrow$  semi-solid

**Convert soft-fats into firmer fats** 

Useful in margarine, peanut butter, baked goods

Improves oxidative stability





Butter

| Serving size 1 Tbsp (14g)<br>Servings Per Container 32            | cts                     |
|-------------------------------------------------------------------|-------------------------|
| Amount per serving                                                |                         |
| Calories 100 Calories from                                        | Fat 100                 |
| %Dai                                                              | y Value*                |
| Total Fat 11g                                                     | 17%                     |
| Saturated Fat 7g                                                  | 36%                     |
| Cholesterol 30mg                                                  | 10%                     |
| Sodium 90mg                                                       | 4%                      |
| Total Carbohydrate 0g                                             | 0%                      |
| Protein Og                                                        |                         |
| Vitamin A 8%                                                      |                         |
| Not a significant source of die<br>sugars, vitamin C, calcium, an | tary fiber,<br>id iron. |
| *Percent Daily Values are base<br>2,000 calorie diet.             | ed on a                 |

INGREDIENTS: Cream, salt.

© Wadsworth – Thomson Learning

Margarine (stick)

| Nutriti<br>Serving size 1<br>Servings Per (                                      | On Fa<br>Tbsp (14g)<br>Container 32 | cts        |
|----------------------------------------------------------------------------------|-------------------------------------|------------|
| Amount per s                                                                     | erving                              |            |
| Calories 90                                                                      | Calories from                       | m Fat 90   |
|                                                                                  | %Da                                 | ily Value* |
| Total Fat 10g                                                                    | 1                                   | 15%        |
| Saturated Fa                                                                     | at 2g                               | 10%        |
| Polyunsatur                                                                      | ated Fat 2g                         |            |
| Monounsatu                                                                       | irated Fat 3g                       |            |
| Cholesterol (                                                                    | Omg                                 | 0%         |
| Sodium 95mg 4%                                                                   |                                     |            |
| Total Carbohydrate 0g 0%                                                         |                                     |            |
| Protein Og                                                                       |                                     |            |
| Vitamin A 10%                                                                    | 6                                   |            |
| Not a significant source of dietary fiber, sugars, vitamin C, calcium, and iron. |                                     |            |
| *Percent Daily<br>2,000 calorie d                                                | Values are bas<br>iet.              | ed on a    |

INGREDIENTS: Vegetable oil

blend (partially hydrogenated and liquid soybean oils), water, sweet cream buttermilk, salt, vegetable mono- and diglycerides, soy lecithin, citric acid, artificial flavor, vitamin A, colored with beta carotene.



Margarine (tub)

| Serving size 1 Tbsp (14g)<br>Servings Per Container 32               | ts                   |
|----------------------------------------------------------------------|----------------------|
| Amount per serving                                                   |                      |
| Calories 90 Calories from                                            | Fat 90               |
| %Daily                                                               | Value*               |
| Total Fat 10g                                                        | 15%                  |
| Saturated Fat 2g                                                     | 10%                  |
| Polyunsaturated Fat 4.5g                                             |                      |
| Monounsaturated Fat 2.5g                                             |                      |
| Cholesterol Omg                                                      | 0%                   |
| Sodium 95mg                                                          | 4%                   |
| Total Carbohydrate 0g                                                | 0%                   |
| Protein Og                                                           |                      |
| Vitamin A 10%                                                        |                      |
| Not a significant source of dieta<br>sugars, vitamin C, calcium, and | ary fiber,<br>Firon. |
| *Percent Daily Values are based<br>2,000 calorie diet.               | dona                 |

**INGREDIENTS:** Water, liquid soybean oil, partially hydrogenated soybean oil,

sweet cream, buttermilk, gelatin, salt, vegetable monoand diglycerides, soy lecithin, lactic acid, artificial flavor, vitamin A, colored with beta carotene.



Margarine (liquid)

| Nutriti<br>Serving size 1<br>Servings Per ( | i <b>on Fa</b><br>Tbsp (14g)<br>Container 32 | cts                      |
|---------------------------------------------|----------------------------------------------|--------------------------|
| Amount per s                                | erving                                       |                          |
| Calories 60                                 | Calories from                                | m Fat 60                 |
|                                             | %Da                                          | ily Value*               |
| Total Fat 7g                                |                                              | 10%                      |
| Saturated Fa                                | at 1g                                        | 6%                       |
| Polyunsatur                                 | ated Fat 4g                                  |                          |
| Monounsatu                                  | urated Fat 1.5                               | g                        |
| Cholesterol (                               | Omg                                          | 0%                       |
| Sodium 85mg 3%                              |                                              |                          |
| Total Carbohydrate 0g 0%                    |                                              |                          |
| Protein Og                                  |                                              |                          |
| Vitamin A 109                               | %                                            |                          |
| Not a significal<br>sugars, vitamir         | nt source of die<br>n C, calcium, a          | etary fiber,<br>nd iron. |
| *Percent Daily<br>2,000 calorie d           | Values are bas<br>iet.                       | ed on a                  |

**INGREDIENTS:** Liquid

soybean oil, water, sweet cream buttermilk, salt, partially hydrogenated cottonseed oil, vegetable mono- and diglycerides, soy lecithin, citric acid, artificial flavor, vitamin A, colored with beta carotene.

# **Fat Replacers**

### **Olestra, Fat replacer**



R = 12-18 hydrocarbon tail

### **Olestra vs Triglycerides**

Calories 75 Fat Calories 0

Total fat 0 g



Ingredients: Potatoes, Olestra, Salt, α-Tocopheryl Acetate (Vit E), Vitamin A Palmitate, Tocopherols (to protect flavor), Vitamin K, Vitamin D



Calories 160 Fat Calories 90 Total fat 10 g Saturated fat 2.5 g

Ingredients: Potatoes, Corn and/or Cottonseed Oil, Salt

(cf. www.olean.com)

# **Lipids and Health**

### **Trans Fatty Acids**

- Trans fats refers to triglycerides containing unsaturated fatty acids in the trans conformation
  - Found in partially hydrogenated fats or oils
  - Help to solidify food (melting point higher than cis)
- FDA adopted new food labeling
  - labels give weight of trans fat
  - restrict low fat definitions by trans fat content
  - Some margarines are sold as "trans free"
    - No hydrogenation
    - Mix sat'd and unsat'd fats
    - Tend to be soft spreads



### **Alternatives for** *trans***-FA in Foods**

- Modification of the hydrogenation process
  - Increase the degree of hydrogenation
- Interesterification
  - Expensive
  - Use 85% un-hydrogenated liquid vegetable oil and 15% fully hydrogenated vegetable oil (hardstock)
- Use of fractions high in solids
  - Derived from coconut, pal and palm kernel oils
  - Prepared by reducing the temperature of an oil sample so that the more saturated fraction solidifies
- Use of trait-enhanced oils
  - High oleic acid oils
  - Plant breeding, sunflower and canola

### **Saturated Fat & Health**

- Risk of heart disease correlates with cholesterol level in bloodstream (serum cholesterol)
  - low density lipoproteins (LDL)
    - carry cholesterol to cells
  - high density lipoproteins (HDL)
    - carry cholesterol away
- Fat affects cholesterol regulation
  - Fat consumption with cholesterol raises serum cholesterol levels

HDL

serum

# Health

#### Depends on what type of saturated/unsaturated fat



### Lipoproteins

#### VLDL (30-80 nm)

LDL ~ (18-25 nm)

Chylomicron (75-1200 nm) Protein poor Lipid rich



(Vance and Vance, 1996; © Elsevier)

#### - (5-12 nm) Protein rich Lipid poor

Fig. 1. Negative staining electron micrographs of human plasma lipoproteins. The larger particles (chylomicrons (Chylo) and VLDL) contain a higher ratio of lipid to protein, and are therefore less dense, than the smaller particles (LDL and HDL, respectively), which contain relatively more protein. Photograph courtesy of Dr. Robert Hamilton, University of California, San Francisco (with permission).

Lipoproteins transport lipids throughout body

### **Essential Fatty Acids**



#### PUFA requirements

a. should make up to 3% of fatty acid intake
b. PUFA deficiencies cause growth retardation, skin lesions, neurological and visual abnormalities
Role of polyunsaturated fatty acids
ω3 and ω6 fatty acids are precursors to potent bioactive compounds
1. Prostaglandins

a. Platelet antiaggregate
2. Thromboxanes

a. Platelet aggregate

| TABLE 5-2        | Sources of Omega Fatty Acids                                                                                                                                                             |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Omega-6          |                                                                                                                                                                                          |
| Linoleic acid    | Vegetable oils (corn, sunflower, safflower, soybean, cottonseed), poultry fat, nuts, seeds                                                                                               |
| Arachidonic acid | Meats, poultry, eggs (or can be made from linoleic acid)                                                                                                                                 |
| Omega-3          |                                                                                                                                                                                          |
| Linolenic acid   | Oils (flaxseed, canola, walnut, wheat germ, soybean)<br>Nuts and seeds (butternuts, flaxseeds, walnuts, soybean kernels)<br>Vegetables (soybeans)                                        |
| EPA and DHA      | Human milk                                                                                                                                                                               |
|                  | Pacific oysters and fish <sup>a</sup> (mackerel, salmon, bluefish, mullet, sablefish,<br>menhaden, anchovy, herring, lake trout, sardines, tuna)<br>(or can be made from linolenic acid) |

<sup>a</sup>All fish contain some EPA and DHA; the amounts vary among species and within a species depending on such factors as diet, season, and environment. The fish listed here except tuna provide at least 1 gram of omega-3 fatty acids in 100 grams of fish (3.5 ounces). Tuna provides fewer omega-3 fatty acids, but because it is commonly consumed, its contribution can be significant.