

Water

- Major Component of most foods
- Water has several effects on food stability, palatability, and overall quality
- Chemical reactions, enzymatic changes, and microbial growth may occur readily in foods with high water contents

Water Content of Foods

Food	Water Content (%)
Meat	
Pork, raw, composite of lean cuts	53-60
Beef, raw, retail cuts	50-70
Chicken, raw meat without skin	74
Fish, muscle proteins	65-81
Fruits Berries, cherries, pears Apples, peaches, oranges, grapefruit Rhubarb, strawberries, tomatoes	80-85 85-90 90-95
Vegetables	
Peas (green)	74-80
Beets, broccoli, carrots, potatoes	80-90
Asparagus, beans, cabbage, cauliflower, lettuce	90-95

Properties

• Solvent

- Dielectric properties
- Mobility
 - Dissolve and mobilize substrate
- Reactant
 - Protons, hydroxyl, hydronium and water itself

General concepts

- Bound water: exists in the vicinity of solutes and other non-aqueous constituents, exhibit reduced mobility and properties differing significantly from "bulk water" in the same system and does not freeze at -40°C
 - Constitutional water: integral part of non-aqueous constituents
 - < 0.03% of total water
 - Interstitial regions of proteins; chemical hydrates
 - Vicinal water: Strongly interacts with specific hydrophilic sites by water-ion and water-dipole associations -
 - 0.5 ± 0.4 % of total water
 - Optimum overall stability at the Monolayer value
 - Multilayer water: occupies remaining first-layer sites and forms several layers around hydrophilic groups by w-w and w-s hydrogen bonds -
 - 3 ± 2 % of total water
 - Rates of reactions increase

General concepts

- "Water binding" and "hydration"
 - Tendency of water to associate with hydrophilic substances
- Water holding capacity
 - Ability of a matrix of molecules to entrap large amounts of water in a manner such that exudation is prevented

Forces acting in water

- Electrostatic interactions between charges
- Hydrogen bonds hydrogen shared between two electronegative atoms
- van der Waals weak induced dipole interactions between any two atoms in close contact
- Hydrophobic interactions

Water Solute Interactions

- Water Ionic groups: some of the most tightly bound water in food
 - Strong electrostatic attraction between the permanent charge of the ion and the dipole of water

- Water Polar but uncharged solute
 - Weaker
 - Hydrogen bonding of dipole-dipole interactions
 - Allow polar components to dissolve

Water Solute Interactions

- Water non-polar molecules
 - Thermodynamically unfavorable _ decrease in entropy
 - Formation of rigid ice-like clathrate at interface
 - Dipole induced dipole
 - Hydrophobic interactions _ association of apolar and nonpolar groups in aqueous environments

Water Solute Interactions

• Amphiphilic molecules

Water Activity

- Relationship between water and perishability
- Various foods with the same water content differ significantly in perishability
 - Water content alone is not reliable
- Importance of water associations with non-aqueous constituents to support deteriorative activities
- Rates of deteriorative changes and microbial growth at normal food storage conditions often depend on water content and a_w.

Water Activity

- Water activity is defined as the ratio of the vapor pressure of water in a material (p) to the vapor pressure of pure water (p_o) at the same temperature.
- The water activity (a_w) represents the ratio of the water vapor pressure of the food to the water vapor pressure of pure water under the same conditions
- $a_w = p/p_o = ERH(\%) / 100$

Temperature Dependence

Clausius-Clapeyron equation

Where: P is the vapor pressure

P° is a vapor pressure at a known temperature T°,
H is the heat of sorption (KJ/mol)
R is the ideal gas law constant, 8.2x10⁻³
T is the temperature (in kelvins).

Clausius-Clapeyron relationship between a_w and Temperature

- The degree of °T dependance is a function of moisture content
- Water activity increases with increasing temperature

Sorption Isotherms

- Plots interrelating water content of a food with its water activity at constant temperature
- The curve is established using a microclimate method
 - Gas-tight jars where RH is fixed with saturated salt solutions
- Usefulness
 - Concentration and Dehydration processes
 - ease or difficulty of water removal
 - Assessing stability (shelf-life) of the food
 - Prevent caking and sticking of food powders
 - Determine moisture barrier properties of packaging materials
 - Formulation of food mixtures

Equilibration process

- need pure salt solutions
- problem of volatile contamination
- large surface area to food
- must be slurry need excess salt
- mixed type samples
- takes time 7 to 21 days
- vacuum fluxing
- toxicity of salts eg lithium , nitrite, iodide, bromide

Saturated Salt Solutions

Saturated salt solution	$a_{ m w}$
LiCIH ₂ O	0.12
CH ₃ COOK	0.23
$MgCl_{2}6H_{2}O$	0.33
K_2CO_3	0.44
$Mg(NO_3)_26H_2O$	0.52
NaCl	0.75
$(NH_4)_2SO_4$	0.79
CdCl ₂	0.82
Li_2SO_4	0.85
K_2CrO_4	0.88
KNO3	0.94
K_2SO_4	0.97
Na ₂ HPO ₄	0.98

Zones of moisture

Water zones

- Zone I
 - strongly absorbed
 - Not able to serve as solvent
 - Behaves as part of the solid
- Monolayer moisture
 - Boundary of zones I and II
 - Water that is strongly bound to the highly polar groups of dry matter
 - Constitutional and vicinal

• Zone II

- Occupies the remaining layers around hydrophillic groups
- Multilayer water: associates with neighboring molecules by w-w w-s hydrogen bonding
- Zone III (Bulk-phase water)
 - Least strongly bound and most mobile (molecularly)
 - Freezable
 - Available as solvent
 - Allow chemical reactions & microbial growth
 - > 95% of total water

At any given EMC, a_w increases with increasing temperature

Sorption Isotherms

Water Sorption Hysteresis

- Water sorption isotherms for desorption and adsorption differ
 HYSTERESIS
- In desorption, water content at the same ERH is higher than in adsorption
- The magnitude of hysteresis depends on:
 - nature of food, physical changes during water removal, temperature, rate of desorption, degree of water removed during desorption.
- At any given a_w, the water content will be greater during desorption
- λ \uparrow Rates of lipid oxidation or loss of Vit. C during desorption compared to adsorption
- λ To stop microbial growth, a product's a_w must be significantly lower if prepared by desorption than by adsorption

Controlling a_w in foods

- equilibration with atmosphere of known relative humidity
- water removal (e.g., dehydration)
- addition of solutes (humectants)
 - sugars
 - NaCl
 - polyhydric alcohols (glycerol, sorbitol)
 - propylene glycol
- loss or gain of moisture in packaged foods

Limitations on a_w lowering

- Solubility
- Organoleptic
- Crystallization in storage
- Reactivity
- Maillard reaction
- Toxicity
 - recent FDA action on propylene glycol

Calculating the Monolayer

- Water molecules are bonded to the product by strong H-bonds
- Higher Stability

 $c = e^{\frac{Q_s}{RT}}$

• Brunauer, Emmett and Teller (BET) method

$$\frac{a_{w}}{(1-a_{w})m} = \frac{1}{m_{o}c} + \left[\frac{c-1}{m_{o}c}\right]a_{w}$$

m = water content (dry basis)
m_o = water content at monolayer
c = constant related to
 adsorption heat

 Q_s = heat capacity of the monolayer

Limitation - only use up to 0.55 maximum

GAB isotherm equation

• improved BET accounts for multilayer adsorption

$$m = \frac{m_0 k_b ca}{\left[1 - k_b a\right] \left[1 - k_b a + c k_b a\right]}$$

polynomial solution - stepwise regression

$$\frac{a}{m} = \frac{k_b}{m_o} \left[\frac{1}{c} - 1 \right] a^2 + \frac{1}{m_0} \left[1 - \frac{2}{c} \right] a + \frac{1}{m_0 k_b c}$$

aw and Growth of Microorganisms

	Most bacteria, some yeasts, pathogenic and spoilage organisms >0.95							Fresh Meat, Fish, Vegetables, etc. Foods with <40% (w/w) sucrose or <7% (w/w) NaCl
IMBER OF GROWING MICROBES	Most cocci, lactobacilli, some molds <i>Salmonella</i> , lactic 0.9 acid bacteria is major spoilage flora							Bread, Cooked Sausages, Medium Aged Cheese
	Most yeasts, mycotoxin-producing molds, spoilage often by molds and yeasts						7 - 0.90	Salami, Old Cheese, Foods with 65% (w/w) sucrose or 15% (w/w) NaCl
	Staphylococcus aureusmay grow						>0.86	Dried Beef, Sweet Condensed Milk, Cereals with 15% Water
	Most molds, No growth of pathogenic bacteria) - 0.87	Jam, Marmelade, Old Salami,
	Most halophilic bacteria						5 - 0.80	Foods with 26% /w/w) NaCl Flour, Cereals, Nuts
	Xerophilic molds ORON Osmophilic yeasts						5 - 0.75	Caramels, Honey, Toffee
							0 - 0.65	
Ž	No growth						0.65	Breakfast Cereals, Snack Foods, Food Powders
0	0.4 0	.5	0.6 WAT	0.7 ER ACTI	0.8 VITY	0.9	1.	

Minimum a_w for some microorganisms

Bacteria Staphylococcus aureus halophilic bacteria (Halobacterium spp.)	0.86 0.75
Molds Aspergillus flavus Chrysosporium fastidium Xeromyces bisporus	0.78 0.69 0.61
Yeasts Debaryomyces hansenii Torulopsis spp. Zygosaccharomyces bailii Zygosaccharomyces rouxii	0.83 0.70 0.80 0.62

Predicting Food Spoilage

- The a_w of a solution may dramatically affect the ability of heat to kill a bacterium at a given temperature.
 - a population of Salmonella typhimurium is reduced tenfold in 0.18 minutes at 60°C if the a_w of the suspending medium is 0.995.
 - If the a_w is lowered to 0.94, 4.3 min are required at 60°C to cause the same tenfold reduction.
- The regulations (21 CFR 113.3(e) (1) (ii)) state that commercial sterility can be achieved by the control of water activity and the application of heat.
 - The risk of food poisoning must be considered in low acid foods (pH > 4.5) with a water activity greater than 0.85 a_w .

Influence of a Product's Water Activity on Types of Reactions

From Principles of Food Science, Part I, Food Chemistry, by Owen R.Fennema, 1976

Water Content Determination

Moisture Measurement

• Air Oven

- Options:
 - 16 hr @ 100° C
 - 8-10 hr @ 110° C
 - 2-4 hr @ 120° C
- (precision ~ + 0.25 % moisture)
- Vacuum Oven
 - Drying under reduced pressure (25-100 mm Hg) allows a more complete removal of water and volatiles without decomposition within 3-6 hr drying time.

Moisture Measurement

Microwave Oven

- Rapid
- Microwave energy penetrates deeply into food products and can reduce process time by 90%
- standardize the drying procedure and ensure that the microwave energy is applied evenly across the sample

Practical Considerations

- The rate and extent of moisture removal depends on the size and shape of the sample, and surface area.
- Clumping and surface crust formation.
- Elevation of boiling point, slower rate of moisture loss
- Water type: interaction with the other components
- Decomposition of other food components: Sugars
- Volatilization of other food components
- Temperature and power level variations

Moisture Analysis - Chemical

Karl Fischer titrations are based on the reaction of elemental iodine with water, in the presence of sulfur dioxide

The Karl Fischer reaction $I_2 + SO_2 + 2H_2O \rightarrow 2HI + H_2SO_4$

Moisture Analysis - Spectroscopic

• NMR

- Hydrogen atoms
- Distinguish between free and bound water
- NIR
 - Absorption of water at different λ s (1950, 1450 and 977 nm)
 - Non-destructive
 - Rapid

Water Activity Measurements

Chilled-mirror Dew-point Temperature method

- Temperature at which saturation of water is observed and the the exact point at which condensation first appears
- Measurement is based on temperature determination
 - calibration is not necessary, but measuring a standard salt solution checks proper functioning of the instrument

Capacitance Hygrometer

- Sample placed in a tight measuring chamber at controlled temperature
- use a sensor made from a hygroscopic polymer and associated circuitry that gives a signal relative to the ERH
- the sensor must be calibrated with known salt standards
- A_w range of 0.15 0.85

