Browning Reactions

✓ Caramelization sugar high temps

brown pigments + flavors

✓ Enzymatic browning
phenolics polyphenoloxidase
phenolics brown pigments
+ flavors

Caramelization

- ✓ At high temperatures, sugar reactions are accelerated
 - Isomerization
 - Water elimination
 - Oxidation
- ✓ Caramelization occurs at
 - High temperatures (~150°C)
 - Low water content/high sugar

- ✓ Formation of
 - Enediols
 - Dicarbonyls

Caramel flavors and pigments

Dehydration mechanism

Caramelization: Consequences

- Leads to nice flavors and colors in many foods
 - Caramel aroma, coffee
 - Beverage colors, beer
 - Maltol one important flavor
 (produced by Maillard rxns also)

- Can also lead to undesirable flavors and colors
 - "burnt-sugar" smell

Maillard Reaction

Maillard Reaction

- ✓ Non-enzymatic browning
- ✓ Complex set of reactions between amines, usually from proteins, and carbonyl compounds, generally sugars.
- ✓ The consequences:
 - formation of many products, most of which have some impact on the flavor and appearance of the cooked food.

Effects of Maillard Reaction

✓ Desirable:

Color - bread crust, syrup, meat
 Flavor - coffee, cocoa, meats
 Antioxidants

✓ Undesirable

Color - changes in color during storage
 Flavor - changes during processing and storage
 Nutritional loss - essential amino acids,
 Vitamins (vit c), palatability and digestibility

Toxicity/mutagenicity

Steps

- ✓ Condensation amine/carbonyl
- ✓ Rearrangement enolization
- ✓ Fragmentation
- ✓ Strecker degradation
- ✓ Polymerization brown color

Initial Step

- ✓ Reaction between a reducing sugar and a primary amino acid.
- ✓ Loss of water from this molecule produces an imine that is able to cyclise, resulting in the formation of an N glycoside (a sugar attached to an NR₂ group).

N-Glycosylation

Amadori Re-arrangement

✓ Instead of cyclisation of the immonium ion, an Amadori rearrangement may take place. Alkali catalysed isomerisation reaction.

Fragmentation

- ✓ Glycosylamines and Amadori products are intermediates formed during the course of the Maillard reaction.
- ✓ The concentration of these intermediates depends upon the reaction conditions (pH, temperature and time).
- ✓ In the pH range 4-7, Amadori products undergo degradation to give 1- and 3-deoxydicarbonyl compounds (deoxyosones).

Fragmentation

Formation of Aroma Compounds

- ✓ Deoxyosones are reactive α-dicarbonyl compounds and give rise to other, secondary products.
 - From 1-deoxyosone, the secondary products include furanoses (important aroma compounds), pentoses and hexoses.
 - Secondary products from 3-deoxyosone include pyrroles, pyridines and formylpyrroles.

Colored Products

$$\begin{array}{c}
CH_{9} \\
C=0 \\
H-C-OH \\
H-C-OH \\
H
\end{array}$$

$$\begin{array}{c}
HD OH \\
CH_{9} \\
H
\end{array}$$

$$\begin{array}{c}
OH \\
CH_{9} \\
H
\end{array}$$

$$\begin{array}{c}
OH \\
CH_{9} \\
H
\end{array}$$

$$\begin{array}{c}
OH \\
CH_{9} \\
H
\end{array}$$

Pentoses may further react with amines to give orange dye products, influencing the color of the food.

Strecker Reaction

- ✓ Reactions between α dicarbonyl compounds, such as the deoxyosones formed in the Maillard reaction, and amines.
- ✓ The reaction involves transamination and yields aminoketones, aldehydes and carbon dioxide.

Strecker Degradation

Strecker Degradation

- ✓ The aldehyde (referred to as a Strecker aldehyde) and aminoketone gives rise to strong odors.
- ✓ Common Strecker aldehydes include ethanal (fruity, sweet aroma), methylpropanal (malty) and 2-phenylethanal (flowery/honey like aroma).
- ✓ Condensation of two aminoketones may yield pyrazine derivatives that are also powerful aroma compounds.

Polymerization

- ✓ Formation of brown nitrogen-containing pigments (melanoidins) by aldol condenssation and carboyl-amine polymerization
- ✓ Production of N-, O-, S-heterocyclic compounds.

Summary of Maillard Reaction

- ✓ The general types of products and consequences of this reaction include:
 - insoluble brown pigmented products, 'melanoidins', which have variable structures, molecular weights and nitrogen content.
 - volatile compounds that contribute to the aroma associated with many cooked foods.
 - flavored compounds, often bitter substances.
 - reducing compounds that may help prevent oxidative deterioration,
 increasing the stability (shelf life) of the food.
 - the formation of mutagenic compounds.
 - loss of (essential) amino acids.

Monitoring

- ✓ Initial stage
 - No UV absorption (Schiff base, Amadori/ Heyns products)
- ✓ Intermediate stage
 - Strong UV absorption (dicarbonyls, HMF, etc)
- ✓ Final stage:
 - Dark brown color (420 nm)

Controling Maillard Reactions

Nature of the Reactants

- ✓ Sugars (acyclic forms and mutarotation rate)
 - Reducing sugars
 - Sucrose
 - Pentoses > hexoses > disaccharides
 - Fructose increased rates of reaction due to greater extent in the open chain form as compared to aldoses
 - Among hexoses:
 - Reactivity decreased in order of:
 D-galactose > D-mannose > D-glucose
 - The % open chain form and rate of mutarotation increases with Temperature and pH

Nature of the Reactants

- ✓ Amino Compounds
 - Act as nucleophiles
 - Basic and hydroxy aminoacids react strongly with reducing compounds
 - Important in aroma compounds ⇒ Strecker
- ✓ L-ascorbic acid ⇒ Oxidation
- ✓ Phenolic Compounds \Rightarrow O₂, Alkaline conditions, metals
- ✓ Others
 - Lipid oxidation products
 - Organic acids

Water Activity

pH

- ✓ pH influences the ratio of products formed
- ✓ the rate of color formation can be reduced by decreasing the pH
- ✓ Under alkaline conditions, the 2,3-enolization pathway is favored

D-glucose at 121°C for 10 min"

Effect of pH on Melanoidin Formation

Additives

✓ Sulfur dioxide

Enzymatic Browning

Overview of enzymatic browning

- Occurs in many fruits and vegetables
- ✓ When the tissue is cut or peeled, it rapidly darkens on exposure to air as a result of conversion of phenolic compounds to brown melanoidins
- ✓ Catalyze 2 types of reactions
- ✓ Active between pH 5-7
- ✓ Cu cofactor

B

PPO Catalyzed Reaction

- Quinone formation is both dependant of enzyme and oxygen
- ✓ Once the reaction starts, the subsequent reactions occur spontaneously and no longer depend of oxygen or enzyme

Phenolic substrates

- ✓ Phenolic compounds are widely distributed in the plant kingdom and are considered to be secondary metabolites.
- ✓ Structurally they contain an aromatic ring bearing one or more hydroxyl groups, together with a number of other substituents
 - Simple phenolics
 - Cinnamic acid derivatives
 - Flavonoids

Phenolic acids

oh catechin (
$$C_{15}H_{14}O_6$$
) catechol ($C_6H_6O_2$) anthocyanin ($C_{15}H_{12}O_6$)

Control of Enzymatic Browning

- Exclusion of Oxygen
 - Exclusion of oxygen is possible by immersion in water, syrup, brine, or by vacuum treatment.
- ✓ Application of heat
 - Blanching
- ✓ pH treatment
 - Lowering the pH
 - Citric, malic, phosphoric and ascorbic acid

Control of Enzymatic Browning

- ✓ Chelators
 - phosphates
 - EDTA
 - organic acids
- Reducing agents
 - Sulfites
 - Formation of colorless addition products with quinones
 - Change in protein conformation
 - ascorbic acid and analogs
 - cysteine
 - glutathione

Mechanism of prevention of colour formationby ascorbic acid

Control of Enzymatic Browning

- Enzyme inhibitors
- ✓ Enzyme treatments to modify substrate
 - oxygenases
 - o-methyl transferase
 - proteases
- Complexing agents
 - cyclodextrins